KPC-TM
and
KPC488.2TM
Trigger Master™
Interfaces

Keithley Data Acquisition Keithley MetraByte/Asyst

User Guide

for the

KPC-TM and KPC488.2TM
Trigger Master™
Interfaces

Revision A - February 1993
Copyright™ Keithley Data Acquisition 1993
Part Number: 24461

KEITHLEY DATA ACQUISITION - Keithley MetraByte/Asyst
440 Myles Standish Bivd., Taunton, MA 02780
TEL. 508/880-3000, FAX 508/880-0179

Warranty Information

All products manufactured by Keithley Data Acquisition are warranted against defective materials and
workmanship for a period of one year from the date of delivery to the original purchaser. Any product
that is found to be defective within the warranty period will, at the option of the manufacturer, be
repaired or replaced. This warranty does not apply to products damaged by improper use.

Warning

Keithley Data Acquisition assumes no liability for damages consequent
to the use of this product. This product is not designed with
components of a level of reliability suitable for use in life support or
critical applications.

Disclaimer

Information furnished by Keithley Data Acquisition is believed to be accurate and reliabie. However,
Keithley Data Acquisition assumes no responsibility for the use of such information nor for any
infringements of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent rights of Keithley Data Acquisition.

Copyright

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form by any means, electronic, mechanical, photoreproductive, recording, or
otherwise without the express prior written permission of Keithley Data Acquisition.

Note:

Keithley MetraByte™, Trigger Master™, and Trigger-Link™ are trademarks of Keithiey Data
Acquisition.

BASIC™ is a trademark of Dartmouth College.

IBM™ and Micre Channel Architecture™ are registered trademarks of Intermnational Business
Maghines Corporation, .

PC, XT, AT, and PS/2 are trademarks of International Business Machines Corporation.
Microsoft™ is a registered trademark of Microsoft Corporation.

Turbo C™ and TurboPascal® are registered trademarks of Borland International.

Contents

CHAPTER 1 - INTRODUCTION

1.1

1.2
1.3
1.4

General Description
Distribution Software
Specifications
Trigger-Link

CHAPTER 2 - INSTALLING Trigger Master

2.1
2.2
2.3
2.4
2.5
2.6

Introduction

inspecting the Boards

Setting Up the KPC-TM Board

Sefting Up the KPC488.2TM Board
Installing Trigger Master

Running PLAYDOS.EXE or PLAYWIN.EXE

CHAPTER 3 - USING THE Trigger Master DRIVER

3.1
3.2

3.3

3.4

35

Introduction
Using the Driver
Using the Driver with BASICA
Accessing the Driver from C
Accessing the Driver from QuickBASIC and VisualBASIC
QuickBASIC
VisualBASIC
Accessing the Driver from TurboPascal
STCINIT
Catling STCINIT from BASICA
Calling STCINIT from C
Cailing STCINIT from QuickBASIC and VisualBASIC
Calling STCINIT from TurboPascal and TurboPascal for Windows
STCSET
Calling STCSET from BASICA
Calling STCSET from C
Calling STCSET from QuickBASIC and VisualBASIC
Calling STCSET from TurboPascal and TurboPascal for Windows
STCCMD
Command Syntax
General Information
Line Numbers
Extensions
Integer Arguments
Time Scales

1-1
1-4
1-4
1-5

2-1
2-1
(22
2-3
2-4
2-4

3-1
3-1
3-1
3-2
3-2

3-3
3-3
3-4
3-4
3-5

3-5
3-6
3-6

3-7
3-7
3-7
3-8
3-8
3-9
3-9
3-9
| 3-10

Contents

3.6

Sending Commands in the Programming Languages
Calling STCCMD from BASICA
Calling STCCMD from C
Calling STCCMD from QuickBASIC and VisualBASIC
Calling STCCMD from TurboPascal and
TurboPascal for Windows
The Command Set
ARM
BEGIN
CONT
DO
END
FLAG
HALT
LOOP
TRIG
WAIT
X
STCSTAT
Request Syntax
General
Extensions
Making Requests in Programming Languages
Calling STCSTAT from BASICA
Calling STCSTAT from C .
Calling STCSTAT from QuickBASIC and VisualBASIC
Calling STCSTAT from TurboPascal and
TurboPascal for Windows
Values Returned by STCSTAT
Interpreting Values in BASICA
Interpreting Values in C
interpreting Values in QuickBASIC and VisualBASIC
Interpreting Values in TurboPascal and
TurboPascal for Windows
The Request Set
ARM
CONT
FLAG
LOOP
STATUS
TRIG
WAIT

3-11
3-11
3-11
3-12

3-12
3-13
3-13
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-16
3-17
3-17
3-18
3-19
3-19
3-19
3-19
3-20
3-20
3-20

3-21
3-21

]
N
~3

NN DD
O |00 o

3-30

3-31

Contents

3.7

3.8

STCLOAD

Calling STCLOAD from BASICA

Caliing STCLOAD from C

Calling STCLOAD from QuickBASIC and VisualBASIC

Calling STCLOAD from TurboPascal and
TurboPascal for Window

STCDUMP

Calling STCDUMP from BASICA

Calling QTODLIMD fram O

W CALHIET Iy W WAV TN W

Calling STCDUMP from QuickBASIC and VisualBASIC
Calling STCDUMP from TurboPascal and
TurboPascal for Window

CHAPTER 4 - PROGRAMMING EXAMPLES

4.1
42
43
44
45

CHAPTER 5 - CREATING PROGRAMS FOR Trigger Master MEMORY

5.1 introduction
CHAPTER 6 - CREATING A BACKGROUND DATA ACQUISITION SYSTEM

FOR DOS -

6.1 Introduction

6.2 The TSR Structure
NOKPC488 and MISSINGGPIBDEV
STCRUN
WAITONSTC and JMPWAITSTC
WAITONGPIB and WAITONAUX
STCFLAG
STCLOG
STCEXIT

6.3 ATSR Log

6.4 A TSR Example

6.5 Creatinga TSR for C

Introduction

BASICA Language Example
C Language Example
QuickBASIC Example
TurboPascal Example

3-31
3-31
3-31
3-32

3-32
3-32
3-32

3-33

3-33

| 4-2

6-1
6-2
6-3

6-4

6-5
6-5
6-5
6-6
6-6

6-7

6-11

Contents

APPENDIXES

Appendix A -[Trigger Master ERROR MESSAGES |

Appendix B - COMMAND QUICK START

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.S
B.10

Generate Trigger Ouiputs

Wait For Trigger Inputs

Enter Program Mode

Set Up and Terminate Program Loop (Program Mode Oniy)
Generate a Wait (Program Mode Only)

Track Program Execution and Generate Interrupts

Exit Program Mode

Initiate Program Execution

Halt Trigger Master Execution

Continue Execution of Halted Program

Appendix C - REQUEST QUICK START

c.1

c.2
c.3
c.4
C.5
Cé6
c.7

Check Remaining Trigger Inputs Established by

ARM Command

Check Remaining Trigger Outputs Established by TRIG Command
Check the Actual State of the Trigger Lines

Check Time Remaining Before Next Trigger

Check Program Progress

Check Remaining Loop Count

Check Remaining Delay Time

 B-1)

B-2
B-2

B-2

B-3
B-3
B-3
B-3

Cc-1
c-1
C-1

c-2

C-2

Chapter 1

INTRODUCTION
-

1.1 GENERAL DESCRIPTION

Trigger Master™ is a system trigger controller for instruments and data acquisition
boards with external triggering. Trigger Master supports a variety of trigger functions
occurring in data acquisition systems. Trigger Master monitors trigger inputs, creates
delays, and generates trigger outputs.

An outstanding feature of Trigger Master is its ability to run programs from its own
memory and fo generate interrupts at appropriate steps of program execution. This
allows Trigger Master, with some adjunct data acquisition hardware, to operate as an
autonomous data acquisition system in your personal computer (PC) while you use
your PC for other purposes.

Trigger Master is implemented on two boards:

« The KPC-TM board provides Trigger Master as a stand-alone plug-in board for the
PC™/XT™/AT™ computer.

» The KPC488.2TM board combines Trigger Master with the high performance
KPC488.2AT GPIB interface to provide a standard interface with GPIB instruments.

Note: This manual describes Trigger Master. For information on the IEEE-488
functions, refer to the manual JEEE 488 Interface Boards which accompanies the
KPC488.2TM board.

Figure 1-1 is a block diagram of Trigger Master.

Physically, Trigger Master is equipped with an 8-pin MicreDIN connector which has 6
trigger lines and 2 ground lines. In addition to Trigger-Link™ introduced later in this
chapter, the MicroDIN can connect directly to standard BNC connectors using the 8502
Trigger-Link Adapter.

Chapter 2 describes configuring and installing the boards.

Trigger Master employs proprietary chips containing state machines that run from an 8-
MHz clock. This allows Trigger Master to respond to a change of trigger inputs by
generating a trigger output within 1.25 us. The state machine coordinates all functions
including the interfaces to Trigger-Link and the PC bus.

A PC program controls Trigger Master using 11 SCPI-like commands which a driver
transforms to microcode instructions, sending them to Trigger Master. Trigger Master
supports three modes of operation:

INTRODUCTION 1-1

T IMEBASE
&
CLOCK
iy
- l f? TRIGGER
pove—y ouTeUT
Y| REGISTER
SEGUENCE RAM M| CROSEQUENCER & BUFFER
€ 1024 WORDS) "~y
OATA CONTROL TA (TR GEER-L |NK
=S e
HOST PC BUS .
[NTERFACE & TRIGGER
CONTROL. Fi DETEGCT
REG | STER TraTS LoGic
il P
A
L4 184 PG XT/AT BUS]

Figure 1-1 Trigger Master Block Diagram

. One mode of operation, Immediate Mode, allows some commands to be executed
immediately by Trigger Master.

« The second mode of operation, Program Mode, allows Trigger Master to store
commands in a 1-Kbyte program RAM as they are received for later execution.
Storing the program into RAM provides extremely powerful performance, since the
state machine can perform two level looping (one nested loop); for repeated
operations, the state machine uses available counters. This mode allows you to start
program storage and execution at any memory location, therefore allowing several
small programs to be resident in memory and allowing you to start them as
required.

« The third mode of operation, Run Mode, occurs while the Trigger Master executes a
program.

A user can generate trigger programs using any of the following methods:
« Pass command strings from the user program to the Trigger Master driver.

« Write trigger programs using an ASCIl-output word processor and then compile the
programs with STCCOMP.EXE.

. Program interactively using PLAYWIN.EXE and PLAYDOS.EXE, running,
respectively, from the Windows and DOS environments.

Any word processor that provides ASCII output allows you to write Trigger Master
programs, store them in ASCI], and then "compile” the output using the STCCOMP.EXE
program. Chapter 6 describes this procedure. The resulting "object" file is then easily
loaded into Trigger Master program memory and executed.

1-2 Trigger Master INTERFACES USER GUIDE

The Trigger Master driver supports up to four boards simultaneously. The driver
accepts the following commands:

ARM Set trigger input condition and wait for trigger

BEGIN Enter program mode

CONT Restart a halted program at the next step

DO Mark the start of a program sequence that is to be performed as a loop

END Mark the end of a program mode sequence with a HALT and return to
immediate mode

FLAG Write a value to a diagnostic flag register (to trace program execution)
HALT Halt Trigger Master operation

LOOF Mark the end of a program loop

TRIG Generate triggers

WAIT Cause a program o execute a time delay

X Begin program execution

The program STCRUNC.OB], described in Chapter 6, builds terminate-and-stay-resident
programs (TSRs) for programs written in C. These programs are driven by interrupts
generated by the Trigger Master; the programs can run in the background in a DOS
environment while you run other programs from DOS.

Chapter 3 describes the PLAYDOS.EXE and PLAYWIN.EXE programs which allow you
to become familiar with the commands and requests, test your hardware without doing
any programming, and generate Trigger Master programs for future execution.
PLAYDOS.EXE runs in the DOS environment, while PLAYWIN.EXE executes from
Windows. Refer to Appendix B for a quick start on the commands and Chapter 3 for a
detailed description of the commands.

In addition to sending commands to Trigger Master you can also request information
from Trigger Master. Trigger Master supports the following requests:

ARM Return information about the trigger detect circuitry

CONT Return the current Trigger Master program position

FLAG Read the value from the diagnostic flag register

LOOP Return the execution status of a Trigger Master program loop
STATUS Return the value from the Trigger Master status register
TRIG Return information about the trigger output circuitry

WAIT Return the remaining delay time

Refer to Appendix C for a quick start on the requests and see Chapter 3 for a detailed
description of the requests. Chapter 4 provides programming examples of the
commands and requests in the supported languages.

INTRODUCTION 1-3

1.2

1.3

DISTRIBUTION SOFTWARE

This manual refers to Trigger Master software as the Distribution Software. The
Distribution Software contains utility files and driver files. Chapter 3 discusses these

files.

SPECIFICATIONS

Channels:
Basic Functions:

Micro Sequencer:

Modes:

Looping:

Loop Repeat:

Trigger Repeat:

Sequencer RAM:

Time Base Drift:

Trigger Input Pulse Width:
Trigger Output Pulse Width:
Detection Latency:

Async Trigger Latency:
Programmable Delay:

Trigger Connector;
Modes:

Power Consumption:

KPC-TM:
KPC488.2TM:

Environmental:
Operating Temperature:
Storage Temperature:
Humidity:
Dimensions:
KPC-TM:

KPC488.2TM:

Software:
Call Driver Languages:

Trigger Master DLL:

6 Input/Output
Trigger Detection
Trigger Generation
Delay Generation
PC Interrupts

Program, Immediate, or Run

2 Levels

1-4096

1-4096

1024 bytes

100 ppm max

400 ns min

Sus

900 ns max

2.2 us max (trigger in to trigger out)
Range Resolution

1 us to 65.536 ms lus

10us to 655.36 ms 10us

100 us to 6.5546 sec 100 us
1msto 65.536sec 1ms

8-pin microDIN

Sync, semi-sync (Trigger-Link), async

450 mA @5V max
1650 mA @5V max

0to+70C
-25to +85 C
0 to 95%, non-condensing

4.25 in H x 5.0 in. W (half-slot)
4.25in. H x 13.25 in. W (full slot)

BASIC™, QuickBASIC, C, TurboPascal®,
VisualBASIC for DOS.

Operation with Windows 3.x languages. Includes
VisualBASIC, Borland C++, C for Windows, and
TurboPascal.

1 -4 . Trigger Master INTERFACES USER GUIDE

1.4

Trigger-Link

Trigger Master supports Trigger-Link™, which brings a new dimension of flexibility,
accuracy, and throughput to test and instrumentation systems. This section introduces
the features of Trigger-Link.

You can easily change the trigger paths between instruments using Trigger-Link with
GPIB commands. The precise trigger signals on Trigger-Link enhance the accuracy and
throughput of the system. Even systems which contain instruments without Trigger-
Link can benefit by using the 8502 Trigger-Link Adapter. The 8502 Trigger-Link Adapter
is the interface to Trigger-Link for conventional BNC trigger connections. Figure 1-2
illustrates various Trigger-Link configurations.

Mechanically, Trigger-Link consists of a cable with six signal paths and two grounds
which can be permanently daisy-chained between a group of instruments. The signal
paths convey trigger signals between instruments. With GPIB commands, instruments
can be configured to use one or more of the signal paths in a variety of modes. Thus the
trigger configuration of a group of instruments can be easily altered by software to suit
the requirements of a particular test.

Electrically, Trigger-Link provides paths for trigger pulses between instruments, thus
eliminating the latencies involved with coordinating trigger functions with the GPIB
interface. This greatly increases system throughput and measurement preciseness for all
instrument systems. Instruments, which completely embrace the Trigger-Link standard,
employ a fast-track link between the trigger input and function execution and between
function conclusion and acknowledge output. Today, many instruments service the
trigger/acknowledge connectors periodically using a microprocessor that performs
other functions. However, this procedure results in unknown and variable timing
latencies as well as slower response.

Trigger-Link supports three trigger modes:

SYNCMODE - A source sends a trigger pulse or sequence of pulses to synchronize
the activities of one or more receivers. There is no acknowledgement
from the receiver(s) that they have received a pulse and are
responding properly to the trigger(s).

ASYNCMODE The conventional two-wire handshake protocol where triggers are
sent on one line and the receiver acknowledges on a second line.
Conceivably, multiple instruments could share a common trigger
source, but each instrument would require a separate
acknowledgement line.

SEMI-SYNC An innovative extension of the async mode which allows a single
trigger source and multiple receivers to carry out a handshake on a
single line. The trigger source will pulse the trigger line to an active
state for about 5 us. Upon receipt of the trigger all receivers will hold
the trigger line in the active state before the trigger source goes
inactive. Each individual receiver will continue to hold the line active
until that receiver is ready to acknowledge it has completed its task.
When the line goes inactive the trigger source will know that all
receivers have completed their tasks.

INTRODUCTION 1-5

With Trigger-Link Instruments Onty

| nstrument

I nscrument

Instrument

iy

TL

T

ETL-1 or CTLe2

| EEE=-488%

CT+1 or CTL=2

CTL~1 & CTh-2

Comi> ! natlon of

Instruments with and without Trigger-LIink

Tr 1 gger=L1rid

rigger-Lin

QO BeNc Conraction

U Trigger—-LIink Connection

fnstrument | netrument
| v O e { /M
|| | e
CTl="% & CTi-2 ST~ or CTLe2
il T™-8502
QO O
| EEE~488* !
——
[©] [UNU
Non- Non-
T+ 1 gger-L1nK 1ggar-L1nk
| n=tr ument | nEtrument
with non-Trigger-Link 1nstruments
Non=-
] T Tgger=L1n
i Tw-8502 | NSLr ument
Tr igger [oEoIoON oL
Master -
—_—
[OXV] (OO
| EEE-488% Non- Non=
T | gger~L.ink T~ Tgger-L1nNK
| NStrument | nStrument.
Legend = |EEE-4§E Connection on KPC-488.2TM Only

Figure 1-2 Trigger-Link Configuration Examples

1-6 Trigger Master INTERFACES USER GUIDE

Chapter 2

INSTALLING Trigger Master
.

2.1 INTRODUCTION
The installation of Trigger Master includes the following:

» inspecting the KPC-TM and KPC488.2TM boards.

» setting jumpers and switches on the KPC-TM and KPC488.2TM boards.
« inserting the two boards into your PC.

« attaching all cables to the boards.

. running the PLAYDOS.EXE and PLAYWIN.EXE programs to exercise and verify
proper operation of the boards.

2.2 INSPECTING THE BOARDS

Remove each board from their protective packaging by grasping the metal rear panel
and removing the board from the anti-static bubble package.

Note: You should handle the boards only by their edges. A static electric
discharge can damage the integrated circuits on the boards.

INSTALLING Trigger Master 2-1

2.3 SETTING UP THE KPC-TM BOARD

The KPC-TM board is a stand-alone system trigger controller which requires four byte-
wide I/0O addresses. The board contains a switch to set up the base address in
increments of four bytes. This switch decodes address lines A9 to A2. The KPC-TM
board ships with a default setting of 310(hexadecimal) as shown in Figure 2-1. The
position OFF corresponds to a logical 1 and the position ON to a logical 0. Table 2-1 lists
the base addresses with the appropriate switch settings for each address.

] n
j iﬁ%éﬂ%
Ofeic|i0)0

Figure 2-1 KPC-TM Card Jumper and Switch Locations.

You can configure the KPC-TM board to generate interrupts on levels 2 through 7 by

changing the jumper on jumper block J2. Trigger Master ships with the interrupts
disabled as shown in Figure 2-1.

Note: The KPC-TM Base Address switch settings are position values only. Refer to
Table 2-1 for the corresponding Address Line values.

Address Switch
Decimal Hexadecimal Line Value
512 200 9 1
256 100 8 2
128 80 7 3
64 40 6 4
32 20 5 5
18 10 4 6
8 8 3 7
4 4 2 8

‘Table 2-1 Base Address Switch Settings

2-2 Trigger Master INTERFACES USER GUIDE

2.4

SETTING UP THE KPC488.2TM BOARD

The KPC488.2TM board implements the trigger master control function and GPIB
control function on the same board. Both the trigger master and GPIB functions can
generate interrupts. This manual describes the settings for the interrupt jumpers and the
switch and jumper settings for the GPIB function. Refer to the accompanying user
manual, JEEE 488 Interface Boards, for further information. Figure 2-2 shows the locations
of the jumpers and switches on the KPC488.2TM card.

Pl

Figure 2-2 KPC-488.2TM Card Jumper and Switch Locations

To prevent the same level from being used by both functions, use the interrupt three-
row jumper blocks to select the interrupt.

Use jumper blocks J5 and J3, shown in Figures
3-2 and 3-3, to set the interrupts levels for the GR18
GPIB and Trigger Master. The top and middle J5 43
rows of the jumper blocks set the GPIB 0|04m0 0|0[0]0;0]0
inemuptlere and e botomand middle | gofll
88 ' 0l0jolo[0 0lolelojolo
« Placing a jumper vertically on the upper 10111373 1415 234587
and middle rows enables an interrupt level
for the GPIB. Placing a jumper vertically on | T77oeer Master
the middle and bottom rows enables an
interrupt level for Trigger Master. Figure 2-3 Jumper Blocks J5 and J3

Exampie

» Placing the GPIB jumper horizontally on
the upper row disables the GPIB interrupt and placing the trigger master jumper
horizontally on the bottom row disables the trigger master interrupt.

Figure 2-3 illustrates enabling interrupt level 12 for the GPIB and enabling interrupt
level 15 for Trigger Master (note that level 13 is unavailable on the PC/AT bus).

INSTALLING Trigger Master 2-3

25

2.6

Trigger Master requires four byte-wide addresses; use switch SW3 to set the base
address in increments of 4. The switch decodes address lines A9 through A2. The
position OFF corresponds to a logical 1 and the position ON to a logical 0. The boards
ship with a default setting of 310(hexadecimal) as shown in Figure 2-2.

INSTALLING Trigger Master
Follow this procedure to install Trigger Master into your PC.

1. Turn the PC power switch to OFF. Unplug the power cord and disconnect all cables
from the rear of the system unit.

2. Remove the cover mounting screws from the rear of the system unit.

Slide the system unit cover forward. When the cover can go no further, tilt it up and
remove it from the base.

Note: Install the KPC488.2TM board into a 16-bit slot; the KPC-TM board can
use an 8-bit slot.

4. Remove the rear panel cover screw from one of the computer’s add-on slots.
Press the board firmly into the main board expansion slot.

6. Seat Trigger Master cable in the Micro-DIN connector and align the board before
tightening the rear panel mounting screw.

7. Secure the board with the rear panel mounting screw.
Align the rear cover, sliding it back into place, Reinstall the mounting screws.
9. Turn on the PC.

10. Make a backup of all application diskettes before copying the applications to your
PC’s hard disk.

11. Run the PLAYDOS.EXE and PLAYWIN.EXE programs to exercise the boards.

Since the Trigger Master cable should seat completely in the MICRO DIN connector, you
may want to insert the cable and test the alignment of the card before tightening the
screw holding the bracket.

RUNNING PLAYDOS.EXE or PLAYWIN.EXE

Check the hardware and exercise Trigger Master after installation by running either the
PLAYDOS.EXE or PLAYWIN.EXE program. PLAYDOS.EXE runs from the DOS
environment and PLAYWIN.EXE executes in the Windows environment.

PLAYDOS.EXE and PLAYWIN.EXE provide a menu interface to the standard Trigger
Master driver calls without requiring the use of a programming language. You can also
use these programs to create and document Trigger Master programs.

2.4 Trigger Master INTERFACES USER GUIDE

The driver supports the following calls, which are described in detail in Chapter 3:

STCCMD Sends Trigger Master commands to the active Trigger Master
either for immediate execution or storage in Trigger Master
program memory.

STCDUMP GSaves the contents of the active Trigger Master program memory
to a binary file.

STCINIT Checks for the presence of a Trigger Master. If Trigger Master is
found, it is initialized and made active. The driver can
simultaneously control up to four boards in the same computer.

STCLOAD Loads the contents of a binary file into Trigger Master program
memory.

STCSET Selects a different Trigger Master to become active (this Trigger
Master must have been initialized).

STCSTAT Requests status information from the active Trigger Master.

The PLAYDOS.EXE and PLAYWIN.EXE programs operate by listing these callsin a
main menu. When you select a call from the main menu, a form appropriate to that call
appears. Windows or buttons are provided, where necessary, for entering data or
making selections specific to that call. After filling in any blanks on the form, press the
button for the call to start execution. Any error messages returned from the driver are
displayed.

Each form contains a "Help" button that provides assistance on that form. Context-
sensitive help is also available. To enable context-sensitive help, you must first include
the files PLAYWIN.HLP or PLAYDOS. HLP in the same directory as the executible files
PLAYWIN.EXE or PLAYDOS.EXE. Access help by pressing <F1> in PLAYWIN.EXE or
Shift+<F1> from PLAYDOS.EXE.

If you select the STCCMD command from the main menu, a new menu appears listing
all the possible commands you may include with STCCMD. When you select a
command, another form appears that is specific to the that command. When you push
the STCCMD button, a window displays the command string sent to the driver. The
"Man" selection is an option that allows you to manually enter your own command
string (the string can contain multiple commands). If an error occurs during execution of
the STCCMD command, the driver displays an error message and places the value "**"
into your command string at the point the driver detected the error.

The "Man" form has a button that enables the "Paste” option. With this option on,
commands sent without errors from other command forms will also appear in the "Man"
form command window. This procedure allows you to document a Trigger Master
program as you create it. You can save the contents Trigger Master memory with the
STCDUMP command. Since the STCDUMP command creates a non-readable binary file,
you can use the "paste” provision to save the contents of the command window to obtain
a file of the command sequence used to generate the program.

‘When you execute the STCSTAT command, the command normally returns the status
only once. When you make a status request from PLAYWIN.EXE or PLAYDOS.EXE, a
form is created which continually reads and displays the status. This procedure allows
you to follow the status changes as Trigger Master executes a program or command.

INSTALLING Trigger Master 2-5

You can also watch the CONT STATUS request during program creation to determine
where the next program instruction will be loaded in memory.

The PLAYDOS.EXE and PLAYWIN.EXE programs provide two methods of choosing a
different call or command and exiting a form:

« Choose a new form without closing the current form. When you bring the current
form back up, the data you previously entered is still in the form. This procedure
simplifies the manual entry of commands, since you can recall the previous ten
commands by using the arrow keys at the side of the entry window. You can also
size and position forms to suit your needs.

« Click on the upper-lefthand button and choose the close option from the menu
displayed. When you next bring up the form, the data is reinitialized. To exit the
program, close the main menu (this automatically closes all forms).

2-6 Trigger Master INTERFACES USER GUIDE

Chapter 3

USING THE Trigger Master DRIVER
|

3.1 INTRODUCTION

The Trigger Master driver supports the following languages: BASICA, Microsoft™
QuickBASIC, VisualBASIC (for DOS and Windows), Microsoft® C, C++, and C for
Windows, and Borland® TurboPascal and TurboPascal for Windows.

» For Windows applications, a Trigger Master DLL is placed in your Windows
directory.

« For DOS environment applications in QuickBASIC, VisualBASIC, C, and
TurboPascal, a Trigger Master file is linked with the application program.
» For BASICA, a Trigger Master binary file is loaded with the program.

For maximum efficiency with all languages, the application program makes a direct call
to the appropriate driver code using the following calls:

STCINIT Checks for and initializes a Trigger Master at a specified board
address and then sets the driver to control that board. The driver
can simultaneously control up to four boards.

STCSET Switches Trigger Master control to a different board. The board
must have been initialized.

STCCMD Sends commands to Trigger Master.

STCSTAT Requests status from Trigger Master.

STCLOAD Loads a binary file into Trigger Master program memory.
STCDUMP Saves Trigger Master program memory to a binary file.

3.2 USING THE DRIVER
The following sections describe "installing” the driver in each of the supported
languages.
Using the Driver with BASICA

Run the following code segment to load the driver In BASICA:

260 CLEAR , 62*1024 * leave 2048 for interface.
270 DEF SBG = 0
280 SG = 256 * PEEKR{&HS511) + PEER(&H510)

USING THE Trigger Master DRIVER 3 -1

290 8G = G + &H1L00
300 DEF SEG = S6 ’ DEF SEG must be get = SG in order
310 ! to call into the driver.

320 BLOAD "STCBAS.BIN', O

330 ¢ The following integer variables are set to the offset

340 * values regquired.
350 STCINIT = 0

360 STCSET = 3

365

370 STCCMD = 6

380 STCSTAT = 8

Initialize Trigger Master.
Switch to already initialized
Trigger Master.

Send command to Trigger Master.
Request information from

- a m m M om oM oW owmom

388 Trigger Master.

390 STCLOAD = 12 Load a program in Trigger Master
395 memory for file.

400 STCOUMP = 15 Save Trigger Master memory

405 to a file.

410 ¢

Accessing the Driver from C

For Microsoft® C, compile your program and link the resulting object file with stcc.lib
using a command such as the following:

LINK your_file,,,stco;
You will need to include at least the function prototypes from stc.k in your program.

Note: For C or C++ programs running under Windows, do not link the
program to stcc.lib. Instead, copy the file stclib.dll to your Windows
directory; the function prototypes in stclib.dll are identical to those in stc.h.

Accessing the Driver from QuickBASIC and VisualBASIC
QuickBASIC

Use one of the following methods when building an executable program from the DOS
prompt:

. If youuse Version 4 or greater or Version 7 with near strings, link your program to
stcgb.lib. :

. If youuse Version 7 with far strings {(compiled with /Fs), link your program to
steqbux.lib.

To run your program in the appropriate QuickBASIC environment, load the program
with one of the following files:

. For Version 7, use the file stcgb7.4lb.

. For Version 4.0 to version 7, use the file stcqb4.glb.

In either case, you must include at least the function protocols from the file sicgb.bi in
your program.

3-2 Trigger Master INTERFACES USER GUIDE

VisualBASIC
Place Visual BASIC function declarations in the Global section.

. For DOS applications:

To run a program from the environment, use the command VBDOS
/LSTCVBD.QLB to load VisualBASIC with the Quick Library STCVBD.QLB.
Include function prototypes for the Trigger Master calls by incorporating the
Trigger Master include files with the statement INCLUDE stcvbd.bi. The file
STCVBD.BI also includes error code definitions and an array to hold error
message strings. If you do not need to display error messages, delete the array;
otherwise, use the code in STCVBDIBAS to initialize the array. You can build an
executable file from the environment or from the command line. To build the file
from the command line, first compile each form or BASIC module of your project
using the command line compiler. Then, from the command line, link the
resulting object modules with the Trigger Master VisualBASIC for DOS library
STCVBD.LIB to produce the executable file. The following command line
example illustrates the production of the file EXVBD.MAK:

BC EXVED.FRM

BC EXVED.BAS
LINF BXVED EXVBDI,,,STCVED.LIB;

« For Windows applications:

Copy the file STCLIB.DLL to your Windows directory. You will need to include function
prototypes for the Trigger Master calls in your global data. The file STCVBW.TXT
includes function declarations appropriate for the Global section of a VisualBASIC for
Windows application. This file also defines error codes and an error array. If you wish to
use the error array, you must include code from STCVBI.TXT in the load procedure of
your first form. The difference between the STCVBW . TXT file and the DOS program file
STCVBD.TXT is in the function declarations which are appropriate to STCLIB.DLL.

Accessing the Driver from TurboPascal
Access the driver from a TurboPascal program (version 6) by including the following
statements in your program.

{31 atetp.inc} { Punction prototype for stotp.cbj }
{$L stctp.cbi} { Link with stetp.obi }

For TurboPascal for Windows, copy the file STCLIB.DLL to your Windows directory
and include the following statement in your program.

{$X STCTFW.INC)} (Punction prototype for STCLIB.DLL }
The include files contain function prototypes for the calls and define error codes. If you

want to display error messages, include an array for error strings. The file STCTPLPAS
contains code that you can add to your program to initialize the error array.

USING THE Trigger Master DRIVER 3-3

33 STCINIT

STCINIT checks for the presence of a board by writing to Trigger Master program
memory. STCINIT initially writes the value 0 and then increments this value through
255(decimal). As the memory register is written, Trigger Master automatically
increments the on-board memory location so successive memory locations are loaded
with increasing values until reaching 255. At this point, STCINIT resets to 0 and repeats
the process until it writes to all 1024 memory locations.

STCINIT then reads back the values. The process of reading the values automatically
increments the memory location. If the read value matches the write value, memory is
cleared and STCINIT returns with no error.

If the board is present, it becomes "active" so that all subsequent commands or requests
to the driver will be sent to that board. Up to four boards can be initialized; as each
board is initialized, it becomes the "active" board. To reactivate an initialized board, use
the STCSET call.

Note: Every time you run a program, you must initialize Trigger Master by
calling STCINIT before making any other calls. During initialization, only
Trigger Master program memory is cleared; other registers may retain
values from previous program execution.

STCINIT requires three arguments as follows:

STCINIT(il%,al%, i2%)

The variables definitions and ranges are as follows:

Variable Definition Range

i1% (integer) Trigger Master reference number 0-3

at% Trigger Master board address 0-7FC

i2% (integer) Indicates success of call 0 = successiul

non0 = unsuccesstul
(refer to Appendix A for Trigger Master error messages.)

Calling STCINIT from BASICA

Use the following BASICA code segment to initialize a Trigger Master at address
30(hex):

450 ERRNUM% = 0 ‘erroxr return variable

610 BRDNUM% = 0

620 BRDADDR% = &H310

630 PRINT "Initialize board "; BRDNUM%; " at address ";
640 PRINT HEX$ (BRDADDR%); " hex"

650 CALL STCINIT(BRDNUM%, BRDADDR%, ERRNUM%)

660 IF ERRNUMX% THEN GOTO 2130

Note: You must define all arguments for the STCINIT call (BRDNUM%,
BRDADDR%, ERRNUM%) before making the call.

3-4 Trigger Master INTERFACES USER GUIDE

Calling STCINIT from C
Use the following code segment to initialize Trigger Master in C:

int brd_num = 0; // integer for Trigger Master board number
int brd_addr = 0x30; // integer for Trigger Master board addresus
int arr; // jinteger to receive error code

steinit (brd_num, brd_addr, &err):
In C you can send values to the driver by placing them directly in the call. For example,
you could use the following code:

stoinie (0, Ox300, &ex:r);

Since the driver returns err, you must have a predefined variable to receive its value.

Calling STCINIT from QuickBASIC and VisualBASIC
Use the following code to call STCINIT from QuickBASIC and VisualBASIC:

DIM rerxrr AS INTEGER
DIM BrdNum AS INTEGER
DIM brdaddr AS INTEGER

Brd¥um = O

brdhddr = &H310

PRINT "Initialize board ";BrdNum;" at address ";
PRINT HEXS (brdaddr); " hex"

CALL stoinit (BrdNum, brdAddr, rerr)

IF rerr <> NOERROR THEN CALL BrrorExit (rerr)

In QuickBASIC and VisualBASIC, you can send values to the driver by placing them
directly in the call. For example, you could use the foliowing code:

CALL steinit(0, &H310, rerr}
Since the driver returns rerr, you must have a predefined variable to receive its value.

Calling STCINIT from TurboPascal and TurboPascal for Windows

The following code illustrates calling STCINIT from a TurboPascal or TurboPascal for
Windows program:

atcinite(1,$314,0rr);

USING THE Trigger Master DRIVER 3-5

34 STCSET

Use STCSET in multiboard systems to switch the driver from one board to another. The
boards must have been previously initialized with the STCINIT command (described in
the previous section). STCSET accepts two arguments as follows:

STCSET (11%, 12%)

The argument i1% is an integer in the range of 0 through 3 that identifies the
board.

The argument i2% is an integer that receives an error code. A value of 0 indicates
no error (refer to Appendix A for a list of error messages).

Calling STCSET from BASICA
The following code segment illustrates the use of STCSET in BASICA:

1200 ‘**wkrxxxx RETURN TC BRD 0 AND SEND TRIGGERS *w#wwkudx

1230 -

1220 BRDNUM% = 0

1230 PRINT “Switch driver control back te Trigger Master #%; BRDNUMS
1240 CALL STCSET (BRDNUM%, ERRNUMS%)

1250 IF BERRNUM% THEN GOTO 2130

1260 -

1320 -

1330 ‘*%x** 30 BACK TO BRD 1 AND WAIT FOR TRIGGERS **a%%as#

1340 7

1350 BRDNUM% = 1

1360 PRINT "Switch driver control back to Trigger Master #"; BRDNUMS%
1370 CALL STCSET(BRDNUM%, ERRNUMS)

1380 IF BRRNUM% THEN GOTO 2130

1390

Calling STCSET from C
The following example illustrates calling STCSET within C:

printf {“Switch driver control back to Trigger Master #0\n"¥);
stoset (0, kexrr);
if {err != NO_ERROR) err_handler(err);

printf ("Switeh driver comtreol to Trigger Master #1\n");
steset (1, &erx);
if (err != NO_ERROR) err_handler(err);

3-6 Trigger Master INTERFACES USER GUIDE

3.5

Calling STCSET from QuickBASIC and VisualBASIC
The following code segment illustrates calling STCSET in QuickBasic and VisualBASIC.

BrdNum = 0

PRINT "Switch driver control back to Trigger Master #"; BrdNum
CALL stcset (Brdium, rerx:)

IF zerr <> NOERROR THEN CALL ErrorExit(rerr)

PRINT

PRINT "Switch driver contrel to Trigger Master # 1"
CALL stcset(l, rerr)

IF rerr <> NOBRROR THEN CALL ErrorBxit(rerr)

Calling STCSET from TurboPascal and TurboPascal for Windows

The following code iltustrates calling STCSET from a TurboPascal or TurboPascal for
Windows program.

stcset (1, err);

STCCMD
STCCMD sends commands to a board. STCCMD accepts three arguments as follows:

STCCMD (@1, 1%, 12%)
c1 refers to a string that contains a command to be translated by the driver into
microcode. The translated microcode is then sent to Trigger Master either for execution
by the on-board state machine or for storage in the Trigger Master memory. The driver
parses the command, checking for unknown commands, invalid syntax, or values out of
range.

11% is an integer that receives an error code. The driver retums a value indicating the
status of errors: a value of O indicates no errors; refer to Appendix A for a list of error
messages.

12% is an integer that receives the position of the last character the driver parsed. Since the
driver stops parsing the command line when it encounters an error, this value provides
assistance for error debugging.

Note: Trigger Master executes commands as they are parsed. If Trigger Master
discovers an error in a multiple-command string, it executes the commands prior
to the error and then retumns with an error code.

Refer to Appendix B for a quick introduction to the commands using examples. Run
PLAYDOS.EXE or PLAYWIN.EXE to experiment with the commands in a non-program
environment. See Appendix A for a description of the error messages.

USING THE Trigger Master DRIVER 3-7

Command Syntax

This section describes the syntax for the string argument (c1) in the STCCMD call. The
STCCMD call supports the following commands: ARM, BEGIN, CONT, DO, END,
FLAG, HALT, LOOP, TRIG, WAIT, and X.

General Information
The following rules apply to all STCCMD commands:

« Spell out the commands in their entirety (abbreviations are not supported).
« Complete each command with a semicolon ;).

» Use any combination of uppercase and lowercase letters within strings (the driver is
insensitive to the case of characters).

« Do not use embedded spaces within a command. For example, the command '"be
gin;" is illegal.

Some examples of legal and illegal strings are as follows:

Iilegal Legal
beg; Begin;
begin beGiN;

In the example "beg”, the driver returns the position 3 and the érror 3 which correspond
to the "Incomplete Command" error. As soon as the driver encounters an error it returns.

You can group multiple commands together using blank spaces (spaces, tabs, carriage
returns, and line feeds) to improve readability. The following examples are equivalent:

begin;end;

begin ; end;
begin;
end;

The driver executes multiple commands contained in a single string when it encounters
a semicolon. In the previous example, the driver executes the "begin" command when
the driver parses the ";" following "begin". As a result, the driver executes commands
one at a time. When the driver encounters an error, the previous commands have

already been executed.

3-8 Trigger Master INTERFACES USER GUIDE

Line Numbers

The commands ARM and TRIG must be followed by one or more line numbers. The
line numbers indicate which of the six trigger lines are armed to look for trigger inputs
or will generate trigger outputs. When either command specifies multiple lines, the line
values must be separated by commas. The following examples illustrate legal and illegal
line values:

Legal Illegal
trig 1, 5; trig 1 5;
TRIG 6;
trig3,2,1;

Note: You may use the same number more than once in a command line. This
does not alter the operation and is not fiagged as an error.

Extensions

Certain commands accept extensions, which further define the command. You must
spell out the entire extension (abbreviations are not accepted) and each extension must
be preceded by a colon. The following example initiates Trigger Master program
execution with interrupts enabled:

x:int;
For additional information on xz, refer to the section "The Command Set".

Integer Arguments

Commands can be followed by one or more integers. An integer cannot contain
embedded spaces, but the number may be separated from the command using one or
more spaces. The integers in the following example indicate the memory location where
program storage should start. The examples of legal and illegal command lines are:

Legal Illegal
beginl23; begin 1 23;
begin 123;

begin 123

The driver checks the range of the number and returns an error if the value is out of
r1ange.

USING THE Trigger Master DRIVER 3-9

Time Scales

Two commands require time arguments: WAIT and TRIG. The WAIT command
generates time delays in a program running from Trigger Master memory (for further
information on both commands, refer to the section "The Command Set"). The WAIT
command syntax is:

walt n.n t;

a.n i$ a floating-point number that specifies a magnitude of time.
¢ indicates a time scale using one of the following three values:
sorS seconds
m or M milliseconds
uorU microseconds

The magnitude of times (z.z) that can be used with the WAIT command range from 1
microsecond through 65.535 seconds. You can write time values using any choice of units. For
example, the minimum and maximum times may be entered as any of the following values:

Minimum Maximum

1u 65535000u
001 m 65535 m
0.000001s 65.535s

The magnitude of the time between any leading and trailing zeros must fit in a 16-bit
counter; therefore, the range is between 1 and 65535. This limits the so-called resolution
of the time scale (how fine a time increment you may specify). This allows the use of up
to five digits for 1 to 65535, but only four digits for 6554 to 9999. For example, the values
0.06553400 s and 0.06553500 s are legal, but the value 0.06553600 s is illegal. The driver
allows an increase of 0.00000100 s from the value 0.06553400 s to 0.06553500 s. If we
attempt to increment the same amount to get to 0.06553600 s, the driver returns the error
"TIME OVER RESOLUTION". This requires a rounding up to the next higher value in
the digit to the left; in this example, the next larger value of time that can be specified is
0.06554000 s. This value represents an increment of 0.00000500; the next incremental
value would be 0.00001000 (to 0.06555000 s).

3-10 Trigger Master INTERFACES USER GUIDE

The time resolution depends on the time value as shown in the following table:

Delay Range Resolution
0.000001 s to 0.065535 s 1 usec
0.065540 s to 0.65535 s 10 usec
0.65540 st0 6.5535 s 100 usec
6.5540 5t0 65.635 s 1000 usec

Note: If you attempt to enter the digits 65536, the driver returns the error "TIME
OVER RESOLUTION". Unless your time scale is microseconds, you will
be overrange as well.

Sending Commands in the Programming Languages

Commands are sent by calling STCCMD with the appropriate arguments. One of the
arguments is the string specifying the command. The general features of those strings
have been discussed in the previous section and the detailed use of each string will be
discussed in the following section. This section shows the use of the call in each of the
programming languages supported.

Calling STCCMD from BASICA
In BASICA, you must define all arguments before making the call.

450 ERRNUM% = 0 ‘error return variable
460 LASTCHR% = O ‘pogition of last character parsed by driver
470 -

700 INITS="begin:;" ' begin program

710 PRINT "Send "; INITS: " command"

720 CALL STCOMD (INITS, ERRNUM%, LASTCHR%)
730 IF ERRNUM% THEN GOTC 2130

740 ¢

Calling STCCMD from C

In C, you must declare unsigned variables to receive information from the driver.
However, the command string sent to the driver can be inserted directly in the call.

char Segin._cmd[] = {"begin;"}; // begin program
unsigned err // variable to receive error
unsigned poa // variable to receive position

printf ("Send %s commapd\n",begin_cmd);
stcomd (begin _cmd, &erxr, &pos);

if (exx != MO_BERRCR} err_havdlaer(err);
printf (*Send %s command\n","arml:rep500;");
steomd ("arml:rep500;", &err, &pos);

if {(exrr != NO_ERROR} erxr_handler{exr);

USING THE Trigger Master DRIVER 3 - 11

Calling STCCMD from QuickBASIC and VisualBASIC

In QuickBASIC and VisualBASIC you must declare integer variables to receive
information from the driver. However, the command string sent to the driver can be
inserted directly in the call.

begincmd$ = "*begin;" ‘! begin program

DIM rerr AS INTEGHR
DIM posat AS INTEGER

PRINT "Send "; begincmd$; " command'
CALL steemd(beginemd$, rerr, post)
IF rerr <> NOERROR THEN CALL ErrorBxit (rerr)

PRINT "Send arml:rep500; command"
CALL stcemd("arml:rapS00;", rerr, post)
IF rerr <> NOERROR TEEN CALL ErrorExit(rerr)

Calling STCCMD from TurboPascal and TurboPascal for Windows

In TurboPascal and TurboPascal for Windows you must also declare unsigned variables
to receive information from the driver. However, the command string sent to the driver
can be inserted directly in the call.

const

Armomd = "arml:rep500;7; { walt for 500 triggers on linme 1 }
var

err: ErrorCodes; { integer toc recaive error number }
pos: Word; { integer to receive exit

position of parser }

stoomd (Armtmd, err, pos);
if (err <> NO_ERROR)

steomd(’triglirepli6:m35; ', err, pos);
if (err <> NO_ERROR)

STCTP.LIB is a special interface to TurboPascal that accepts a standard TurboPascal
string. STCLIB.DLL is a general DLL that expects so-called "C" strings. To send strings to
the DLL in TurboPascal for Windows, create a string with a NULL character on the end
outside the call, and pass the "second element” of the string in the call.

conat .
ArmCmd = ‘axyml:repS500;° + #0;

var
err: ErrorCodes;
pos: Word;

Stcomd (ArmCndll], err, pos):

3-12 Trigger Master INTERFACES USER GUIDE

The Command Set

The command set consists of ARM, BEGIN, CONT, DO, END, FLAG, HALT, LOOP,
TRIG, WAIT and X. The Trigger Master mode of operation determines how the
commands are operated on:

» Inimmediate mode, Trigger Master executes commands as they are received. The
commands BEGIN and CONT operate only in this mode.

« In program mode, the commands are stored in Trigger Master memory for future
execution. The commands DO, END, LOOP, and WAIT operate only in this mode.

» Inrunmode, Trigger Master is executing a program and will only recognize the
HALT command.

The remaining commands (ARM, FLAG, HALT, TRIG, and X) can be used in any mode
of operation.

The following sections discuss the commands in detail.
ARM

The Trigger Master trigger-detect logic latches trigger edges on the six trigger input lines
(the default is high-to-low transitions). The ARM command specifies a trigger input
transition pattern to be detected. When the ARM command executes in a Trigger Master
stored program, the program waits until the pattern is detected before proceeding to the
next program step. In immediate mode, you can loop using the TRIG request
(previously described) to detect the pattern.

The ARM command must be followed by one or more line numbers. If you enter
multiple line numbers, separate each number using commas. Specifying the same line
number more than once has no effect and is not flagged as an error. The following
example waits for high-to-low trigger transitions on lines 1 and 5.

armil,5;

You can specify the edge to latch by using a + (low-to-high) or - (high-to-low, the
default) behind the line number. The following example waits for a low-to-high
transition on line 1 and high-to-low transitions on lines 3 and 5.

arm 1+, 3-, 5;

Note: Because of the latching nature of the detect circuit, the edges need not
occur simultaneously and the state of the trigger lines will generally
differ from the pattern specified in ARM when the trigger condition is
met.

In program mode, ARM supports the REP extension which allows you to wait for the
trigger pattern to be repeated from 1 to 4096 times before proceeding. The following
command line will wait for 23 repetitions of a trigger pattern of high-to-low transitions
on lines 1 and 4. Each time the pattern is detected, latches are automatically cleared and
re-armed.

arm 1, 4 irep 23;

USING THE Trigger Master DRIVER 3-13

The general syntax for the ARM command is:

ARM {lI+|~1 1,...}[:RBP nn];
The variable 1 must be within the range 1 through 6 and the variable on must be in the range 1
through 4096.
BEGIN

Use BEGIN only in immediate mode to switch Trigger Master to program mode. The
BEGIN command optionally accepts a single argument: the Trigger Master program
memory address where the program will start loading. This integer argument must be
in the range 0 through 1023 (the default starting address, with no argument, is 0). The
following example switches the driver to program mode and initializes the program
counter to 40.

begin 40;
The general syntax for the BEGIN command is:

BEGIN [nnl;
The variable an must be in the range 0 through 1023.

Normally, you will start program loading and execution at address 0, but you may also have
multiple programs in memory (terminate each program with an END or HALT command).

To load or execute multiple programs, you must know the locations of the instructions.
Determine these locations either by building a program from PLAYWIN.EXE or
PLAYDOS.EXE or by using the techniques described in Chapter 5, Creating Programs for
Trigger Master Memory.

CONT

Use CONT in immediate mode to restart a program that was stopped by a HALT
command or FLAG[nn}:INT command within the program. You cannot reliably restart a
program that has been halted externally (from cutside the program). If the program
contains additional FLAGInnJ:INT commands, use the CONT command with the INT
extension to clear the previous interrupt and arm Trigger Master to generate another
interrupt. The following example restarts a program without interrupts:

cont;

This example restarts a program executing out of Trigger Master memory. The general
syntax for the CONT command is:

CONT {:INT];

Note: If you enable Trigger Master to generate interrupts, you must supply your own interrupt
service routines.

3-14 Trigger Master INTERFACES USER GUIDE

Do
Use DO in program mode to mark the start of a sequence of code which is to be
repeated. The DO command requires a single argument, which is an integer in the range
of 1 through 4096. The argument specifies the number of times the code sequence is to
repeat. The code sequence must be terminated by the LOOP command (described later
in this section). The driver allows two levels of loops; the driver will flag an error if you
attempt to start a third level. In the following example, first command1 executes, then
command2; this code sequence repeats 25 times:

do 25; commandl; commandl; loop;
The general DO syntax is:

DO ong

nn is in the range 1 through 4096

END

Use END in program mode to insert a HALT (described later in this section) and return
Trigger Master to immediate mode. The driver will return an error if you attempt to end
a program that has DO commands which have not been resolved by a LOOP.

The general END syntax is:

END;

FLAG

Use FLAG in program mode to insert FLAG commands in a program. As the program
executes, FLAG will write a byte to the flag register. The byte should be a value in the
range of 0 through 255 (0 is the defaulf). You can then use the FLAG request to read the
flag register to determine which milestone your program has reached. If FLAG has the
INT extension in program mode, FLAG causes the Trigger Master program to generate
an interrupt and halt after writing the flag. Use FLAG in immediate mode for test only;
this operation writes a byte in the range of 0 through 255 (0 is the default) to the Trigger
Master flag register. For example, the following command writes 68 to the flag register:

flag 68;

The general syntax for the FLAG command is:

FLAG [nn][:INT];

The value nn is in the range of 0 through 255.
Use the extension :INT only in program mode.

Note: If you enable Trigger Master to generate interrupts, you must supply your own
interrupt service routines.

USING THE Trigger Master DRIVER 3-15

HALT

The HALT command stops Trigger Master activity, disables Trigger Master hardware
interrupts, and clears the hardware interrupt. When HALT executes during Trigger
Master program execution, you can use the CONT command to restart the program on
the next instruction. Use FLAG with the INT extension in a Trigger Master onboard
program to halt a program, write the flag register, and generate an interrupt.

The general syntax for the HALT command is:

BALT;

LOOP
Use LOOP in program mode to terminate a loop initiated with the DO command.

The general syntax for the LOOP command is:

LOOP;

TRIG

Use TRIG to generate high-to-low trigger pulses (5 us active low). The TRIG command
accepts from 1 through 6 arguments with each argument specifying a line number.
Multiple line number arguments must be separated by commas. Repeating the same line
number more than once has no effect and does not flag an error. The following example
simultaneously generates 5-us pulses on lines 2 and 4.

trig 2,4;
You can generate a repetitive pulse train of 1 through 4096 pulses by using a REP
extension. If you use the REP extension, you must also use the PER extension with a
time; this time value specifies the REP period. The following TRIG example generates 72
5-us pulses on lines 2 and 3 with a repetition period of 16 milliseconds.

trig 2,3:rep72:per lém;
The maximum period you can specify is 65.535 seconds and the minimum period is 10
microseconds. Refer to the section Time Scales in this chapter for a complete discussion
on specifying times.

In program mode, you can use the SEMI extension alone, or in combination with the
REP extension. The SEMI extension implements the semi-synchronous handshake. In
semi-synchronous handshake mode, Trigger Master initiates a 5-us active-low trigger
pulse on a line; handshaking devices then become active low within 5 us. To complete
the handshake, the devices release the line when they have completed their activity. The
handshake is complete when Trigger Master detects the low-to-high transition of the
line. In the semi-synchronous handshake mode, the TRIG command does not require the
PER extension. :

The following example performs a semi-sjmchronous handshake on line 3.
trig 3:semi;
Note: The SEMI extension is only valid in program mode.

The generai syntax for the TRIG command is:

'I'RIG {ll"')
[[+REP nn{:PER zr ¢|:SEMI|:SEMI:PER rx t}]|[:SEMI]]:

The variables may contain the following values:

3-16 Trigger Master INTERFACES USER GUIDE

Variable Definition Range

! ‘Line number(s) 1-6

nn Trigger pattern repeat 1-4096
rr Real value of time *

t time scale *>

* Refer to the section Time Scales in this chapter for a complete discussion on
specifying times and the range of values.

WAIT
Use WAIT in program mode to generate time delays during Trigger Master program
execution. The WAIT command accepts a single time-delay argument. The following
example generates a time delay of 32.3 ms (refer to the section Time Scales in this chapter
for a complete discussion on specifying times).

wait 32.3m;
The general syntax for the WAIT command is:

WAIT rr t;
The variable may contain the following values:

Variable Definition Range
rr Real value of time *
t fime scale *

* Refer to the section Time Scales in this chapter for a complete discussion on
specifying times and the range of values.

X

Use X command to start a Trigger Master program executing at the specified location in
Trigger Master program memory location. The X command accepts a single-integer
argument which specifies the location of the program in memory. The integer must be in
the range of 0 - 1023(decimal) (the default value is 0).

Normally, you will start program loading and execution at address 0, but you may also
have multiple programs in memory (terminate each program with an END or HALT
command).

To load or execute muitiple programs, you must know the locations of the instructions.
Determine these locations either by building a program from PLAYWIN.EXE or
PLAYDOS.EXE or by using the techniques described in Chapter 5, Creating Programs for
Trigger Master Memory.

USING THE Trigger Master DRIVER 3- 17

3.6

Notes: If Trigger Master is operating in program mode, the driver inserts a
HALT at the current memory location. Trigger Master returns to
immediate mode prior fo starting program execution.

In program mode, the driver returns an error if you attempt to end a
program containing DO commands that have not been resolved by a
LOOP command.

If your program contains a FLAG command with the INT extension, use the X command
with the INT extension to clear a previous interrupt and enable Trigger Master to
generate interrupts. The following example starts execution of a program at memory
location 178(decimal):

x 158;
The general syntax for the X command is:

X [on] [+INT];
The acceptable range for the variable nn is 0 through 1023(decimal).

Note: If you enable Trigger Master to generate interrupts, you must supply your own
interrupt service routines.

STCSTAT

Use the STCSTAT command to return Trigger Master register values. STCSTAT accepts
four arguments in the following order:

Argument Description

1 A string specifying the Trigger Master register value to be returned.

2 An integer to receive the error code returned by the driver after
validating the request string.

3 An integer to receive the position of the last character parsed by the
driver. You can use this value to pinpoint problems if the status
indicates an error.

4 An array of two integers to receive the data.

Appendix B provides a quick introduction to STCSTAT. The PLAYDOS.EXE and
PLAYWIN.EXE programs allow you to experiment with requests in a non-programming
environment. Refer to Appendix A for a list of the possible error messages.

Note: Once the Trigger Master driver has filled one request, it immediately
returns. This is an opposite condition to commands, which perform
multiple requests before returning. Therefore, you should not place
multiple requests in the same string.

3-18 Trigger Master INTERFACES USER GUIDE

Request Syntax

The STCSTAT command supports seven requests: ARM, CONT, FLAG, LOOP,
STATUS, TRIG, and WAIT.

General

You must fully spell out the requests; the command does not accept abbreviations. Do
not insert spaces within an argument and follow each request with a semicolon (;). The
driver is insensitive to the case of letters and accepts any combination of uppercase and
lowercase letters. The following examples illustrate legal and illegal forms of the
comumand. '

Legal IMegal

Amm; ar;
aRm; arm;
arm

In the example "ar;" the driver returns the position 3 and the error 3 which corresponds
to the "INCOMPLETE_COMMAND" error. As soon as it encounters and error, the
driver returns.

Since the driver also returns after parsing one request, the driver fulfills the first string
and ignores all others. In the following example, the driver returns the value from the
arm request and ignores the cont request.

arm; cont;

. Extensions
Certain requests can contain extensions, such as REP, which indicates the number of
repetitions of the trigger input pattern remaining to be detected. For example

arm:rep;

Extensions must be preceded by a colon and spelled out in their entirety.
Making Requests in Programming Languages

Call the STCSTAT command with appropriate arguments to make requests. One of the
arguments is the string containing the command. Refer fo the previous sections for the
general features of these strings; detailed use of the strings is discussed later in this
chapter. This section illustrates the use of the call in each of the supported programming

languages.

USING THE Trigger Master DRIVER 3-19

Calling STCSTAT from BASICA
The followmg segment illustrates calling STCSTAT from BASICA.

450 BRRNUM% = ‘error return variable
'460 LASTCHR% = 0 'pogition of last character parsed by driver
470

550 DIM RESULM%:(2) ' integer array to hold results froem STUSTAT
560 ¢

1430 -

1500 reAN*R2rANEEEE YATT FOR DELAY * RN S ARSANRIXAANNRRAARNRAS AR RS
1510

1520 INIT$="wait;"

1530 CALL STCSTAT(INITS, ERRNUM%, LASTCHR%, RESULT%(0))

1540 IF ERRNUM% THEN GOTO 2130

Note: All variables used in the call must be defined before the call is made.
Calling STCSTAT from C
The following segment illustrates calling STCSTAT from the C programming language.

unsigned ret_value[2); // array to receive returned value
int err; // int to receive error number
int pos; // int to raceive exit position of parser

stastat ("wait;", &err, &pos,rat_valuea};
if (err != NO_ERRCR) err_handler(err);

Note: All values returned by the driver must be declared before the calls.
Calling STCSTAT from QuickBASIC and VisualBASIC
The following segment illustrates calling STCSTAT from QuickBASIC and VlsualBASIC.

DIM RetVal{2) AS INTEGER
DIM rerr AS INTEGER
DIM posat AS ITNTRGER

CALL stostat("wait;%, rerr, post, RetVal(0))
IF rerr <> NOERROR THEN CALL ErrorBxit (rerr)

Note: All values returned by the driver must be declared before the calls.

3-20 Trigger Master INTERFACES USER GUIDE

Calling STCSTAT from TurboPascal and TurboPascal for Windows

The following code segment illustrates calling STCSTAT from TurboPascal and
TurboPascal for Windows.

{ value returned by atestat)}

var
RetValue: array [0..l1] of WORD;
errc: ErroxCoedesa; { integer to receive error number }
post Word; { integer tc receive exit position of parser)}

atcatat (‘trigirep; ', erx, pos,RetValuel[0]);
Writeln(’Waiting for triggers; REP = ‘,RetValue[0]}:
if (err <> NO_ERROR)

then ErrEandler{err);

Note: All values returned by the driver must be declared before the calls.

STCTP.LIB is a special interface to TurboPascal that accepts a standard TurboPascal
string. STCLIB.DLL is a general DLL that expects so-called "C" strings. To send strings to
the DLL in TurboPascal for Windows, create a string with a NULL character on the end
outside the call, and pass the "second element" of the string in the call.

const
Trigheg <« ‘Trig:Rep;’ + #0;

var

RetValue: array[0..1] of WORD;
ery: BrrorCodes;

pos: Word:

Steatat (TrigRegl[l], err, pos, RetValue{l]);

Values Returned by STCSTAT

One STCSTAT argument is a reference to an array of two integers which receives the
values from the call. Depending on the request, the first integer will receive either an 8-
bit register result, a 10- or 12- bit counter value, or the 16-bit value from the delay
counter.

Time delays in Trigger Master are generated by clocking a 16-bit counter using a clock
derived from the Trigger Master 8-Mhz clock. This 8-Mhz clock is divided by 8 (to create
a 1-us clock) and then by an additional factor of 1, 10, 100 or 1000 {the additional factor
depends on the value in the upper two bits of the 8-bit Trigger Input/Prescaler register).
In this manner, you can obtain time delays of 1 microsecond through 65.536 seconds.

When you request time delays you also receive the Trigger Input/Prescaler register
value in the second integer. From this value, you can derive the multiplier. The bit
pattern of the second integer is as follows:

USING THE Trigger Master DRIVER 3-21

-5 % 42 12 il 10) L] 7 [3 bed 3 2) o

D|0j0|0|0|J0|0 |0 MIMOIX [X[XXX |X

Bits M1 and M0 determine the time multiplier as follows:

Mi MO Muitiplier
0 0 1

0 1 10

1 0 100

1 1 1000

When you request a time, you need only look at the second integer. The driver aiso uses
the second integer to return a code which is helpful in interpreting the result of the
operation. The following lists the various codes returned for different commands:

Code Command
FFFO ARM;
FFF1 ARM:POL;
FFF2 FLAG;
FFF3 STATUS;
FFF4 TRIGLATCH,;
FFF5 TRIG:IN
FFOO ARM:REP;
TRIG:REP;
FFO1 CONT;
FFO2 LOOP;
FFO3 LOOP:QUT,

Interpreting Values in BASICA
BASICA handles 16-bit values (integers) as signed values between -32768 and +32767
(Trigger Master returns integer values from unsigned 0 to 65535). Using the following
technique, you can interpret results as hexadecimal values or convert them to real values
(floating-point single precision).
1580 ‘Correct for BASICA’s lack of unsigned

1590 MYVAL# = RESULT%(0)
1600 TIF RESULT%{0) < 0 THEN MYVAL# = 655361 + MYVAL#

Note: After a timeout occurs, the counter reseis to is initial value.

3-22 Trigger Master INTERFACES USER GUIDE

The following code segment interprets a time result returned by STCSTAT in BASICA.

450 BRRNUM% = 0 ‘exrror return variable

460 LASTCHR% = 0 ‘pogition of last character parsed by driver
470 ¢

480 MYVAL# = 0! ‘ value returned from delay count register
450 SCALB% = 0 ‘ wvalue from prescaler register

800 -

550 DIM RESULT%(2) “ integer array to hold results from STCSTAT
560 *

1490 ¢/

1500 FIERARREXN T ERRNR WAIT FOR ngr XERRAAE TR RN R AR AN T RIS
1819

1520 INITS="wait;"

1530 CALL STCSTAT(INITS, BRRNUM%, LASTCHR%, RESULT%(0))
1540 IF BRRNUM% THEN GOTO 2110

1550 PRINT"Waiting for time out“

1560 PRINT"Time Remaining = *;

1570 *

1580 ‘Correct for BASICA’s lack of unsigned
1590 MYVAL# = RESULT%{0)

1600 TIF RESULT%{0) < 0 THEN MYVAL# = 65536! + MYVAL#
1610 SCALE% = RESULT% (1) AND &HCO

1620 JIF SCALE% = &HCO THEN MYVAL# 1000 *MYVAL#H#
1630 IF SCALR% = &E80 THEN MYVAL# = 100! *MYVAL$
1640 IF SCALR% = &H40 THEN MYVAL# = 10!*MYVAL#
1650 IF MYVAL# »= 1000! THEN GOTC 1680

1660 PRINT MYVAL#:" usec"

1670 GOTO 1740

1680 MYVAL# = MYVAL#/1000!

1690 IF MYVAL# »>= 1000: THEN GOoTO 1720

1700 PRINT MYVAL#;" maec"

1710 @OTO 1740

1720 MYVAL# = MYVAL#/1000!

1730 PRINT MYVAL#:" sec

1740 -

/]

USING THE Trigger Master DRIVER 3-23

interpreting Values in C

The following program segment illustrates the use of time values in the C programming
language.

Note: After a timeout, the counter resets to its initial value.

unsigned ret_value[2]; // array to receive raturned value
int err // int to receive errcr number
int pes; // int to receive exit poeition of parser

float time remaining; // time from delay count and prescaler

stestat ("walt;", &err, &pos,ret_value);
princf{"Time remaining = "};
if (err 1= NO_ERROR) erxr_handler(err);
time_remaining = (float) ret_value[0];
switch (ret_valuefl] & 0xec0){
cage 0xc0:({
time_remaining *= 1000;
break;
}
case 0x80:(
time_remaining *= 100;
break;
}
case 0x40:{
time_remaining *= 10;
break;
}
}
if (time_remaining < 1000) {
printf (¥%,.0£f usecs\n",time_remaining);
}
elae(
time_remaining = time_remaining/1000.0;
if (time_remaining < 1000){
printf ("%.4£f msecs\n",time_ remaining);
}
alse{
time_remaining = time remaining/1000.0;
printf ("%.4f secs\n",time_remaining);
}
3} time_remaining = ret_wvaluel0];

3 .24 Trigger Master INTERFACES USER GUIDE

interpreting Values in QuickBASIC and VisualBASIC
QuickBASIC and VisualBASIC handle 16-bit values (integers) as signed values in the
range from -32768 through +32767 (Trigger Master returns values in the range unsigned
0 - 65535). Use the following technique to interpret results as hexadecimal values or
convert them to real values.

‘Correct for QuickBASIC’s lack of unsigned
TimeRemaining = RetvVal({0)

IF RetvVal{0)} < 0 THEN TimeRemaining = 65536! + TimeRemaining
Note: After a timeocut, the counter resets to its initial value.

The following code segment interprets a time result returned by the STCSTAT in
DuickBASIC.

DIM RetVal(2) AS INTEGER

IIM rerr AS INTEGER

DIM post AS INTEGER

DIM scale AS INTEGER

TimeRemaining! = 0

CALL stcstat("wait;", rerr, post, RetvVal(0)})
PRINT "Waiting for time out"

IF rerr <> NOERROR THEN CALL ErrorExit (rercr)
4

‘correct for QuickBAasSIC‘s lack of unsigned
TimeRemaining = Retval(0)

+

IF RetVal(0) < 0 THEN TimeRemaining = 65536! + TimeRemaining

PRINT "Pime Remaining = ";
scale = RetVal(l)} AND &HCO

SELRCT CASE scale
CASE &HCO
TimeRemaining
CASE &H80
TimeRemaining = 100 * TimeRemaining
CASE &E40
TimeRemaining
END SELECT

1000 * TimeRemaining

10 * TimeRemaining

IF {TimeRemaining <« 1000) TEEN
PRINT TimeRemaining: "usecs"
ELSE
TimeRemaining = TimeRemaining / 1000!
IF (TimeRemaining < 1000) THEN
FRINT TimeRemaining; “msecs"
ELSE
TimeRemaining = TimeRamaining / 1000!
PRINT TimeRemaining; "sacs!
END IF
BND IF¥
caLL atcstat(“status;", rerr, post, Retval(0)})
PRINT "Checking statusz = "; RetVal(0)
IF rerr <> NOERROR THEN CALL BErrorBxit (rerr)

USING THE Trigger Master DRIVER 3 - 25

Interpreting Values in TurboPascal and TurboPascal for Windows
The following program segment illustrates the use of time values in TurboPascal and
TurboPascal for Windows.

Note: After a timeout, the counter resets to its initial value.

stegtat (‘wait;’, err, pos,RetValue([0]):;
Write(’Time remaining =):
if (err <> NO_ERROR)

then BrrHandler (err);

PTimeRemalning := RetValue[0];

case (RetValuel[l)] and $c0} of
$c0: TimeRemaining := 1000*TimeRemaining;
480: TimeRemaining := 100*TimeRemaining;
$40: TimeRemaining := 10*TimeRemaining;
end;

if (TimeRemaining < 1000)
then Writeln(TimeRemaining, ‘ usecs‘)
alse
begin
TimeRemaining := TimeRemaining/1000.0;
if (TimeRemaining < 1000)
then Writeln(TimeRemaining,’ msecs’)
else
bagin
TimeRemainizng := TimeRemaining/1000.0;
Writeln (TimeRemaining, ' secs’);
and;
end;
Note: TurboPascal for Windows performs the WAIT command differently, but
processes the time in the same manner.

3-26 Trigger Master INTERFACES USER GUIDE

The Request Set

The request set consists of the requests: ARM, CONT, FLAG, LOOP, STATUS, TRIG,
and WAIT. The following sections discuss the requests in detail.

ARM
ARM returns information about the trigger input circuitry. The ARM forms are:

ARM; Retums the inverse of the Trigger Mask Register in the first element of the result
array and the value FFFO(hex) in the second element of the array. The conients of
the first element is in the following format:

7 3 s < 3 2 “ 1)

CHE CHS CH4 CH3 CH2 CHA

x x MASK | MASK | MASK | MABK | MASK | MASK

A MASK bit value of O indicates that line is armed to receive a trigger.

ARM:POL; Returns contents of the Trigger Polarity Register in the first element of the result
array and the value FFF1(hex) in the second element of the array. The contents of
the first element is in the following format: ‘

7] s - < | 2 1 0
CHE cHS CH4 cH3 cHZ CHA
x x POL poL POL poL raL PoOL

A POL (polarity) bit value of O arms the driver for a high-to-low transition and a
value of I arms the driver for a low-to-high transition.

ARM:REF; Retums the number of trigger maiches yet to be detected (Trigger Repeat
Counter) in the first integer of the result array and the value FF0O(hex) in the
second integer of the array.

CONT

The CONT request returns the value of the Microprogram Counter in the first integer of
the result array and the value FF01(hex) in the second integer of the array. The
microprogram counter points to the next program step to execute. The syntax for the
CONT request is as follows:

CONT;
This request is useful when loading multiple trigger programs. After loading the first
program, the conr request returns the address of the next available location within the sequence
RAM. This address would then be used as an argument in the next sgezy command.

USING THE Trigger Master DRIVER 3 -27

FLAG

The FLAG request returns the value of the Diagnostic Flag Register in the first integer of
the result array and the value FFF2(hex) in the second integer of the array. The syntax
for the FLAG request is as follows:

FLAG;

LOOP

The LOOP request returns information about the progress of a program through Trigger
Master program loops. The LOOP forms are:

LOOP; Returns the value of the Current Loop Counter in the first infeger of the
result array and the value FF02(hex) in the second integer of the array.
The Current Loop Counter value is the number of times you must
perform the loop after the current pass.

. When you enter a nested loop, the Current Loop Counter is stored
and reloaded with the value appropriate to the new inner loop.

. When you leave the nested loop, the previously stored value will
be returned to the Current Loop Counter.

LOOP:OUT; Returns the value the Current Loop Counter that was stored when a
nested loop was entered in the first integer of the result array and the
value FF03(hex) in the second integer of the array. The stored value will
not be cleared when you leave the nested loop; use the FLAG commands
at appropriate places to determine if the results of the LOOP:OUT request
have any significance.

3-28 Trigger Master INTERFACES USER GUIDE

STATUS

The STATUS request returns the value of the Status Register in the first integer of the
result array and the value FFF3(hex) in the second integer of the array. The contents of
the Status Register are in the following format:

7 8 s “+ 3 2 1 0
REG REG REG TRIG INT
2 “ D DET INT EN LOAD RUN

The bits REG2, REG1, and REGO0 determine which data register is accessed.

A TRIG DET bit value of 0 indicates you have issued an ARM command and a
value of 1 means the conditions of your ARM command are met. (The TRIG DET
bit is valid only when Trigger Master is not executing a program.) During
program execution, this bit is also set, but the bit is automatically cleared on the
next microsequencer clock cycle (therefore, you may never see this bit set).
During program execution, use the ARM bit of the TRIG request to determine
this same information.

An INT bit value of 1 indicates the board has generated an interrupt.
An INT-EN bit value of 1 indicates Trigger Master is set to generate interrupts.
A RUN bit value of 1 indicates a program is executing.

The syntax for the STATUS request is as follows:

STATUS;

USING THE Trigger Master DRIVER 3 -29

TRIG
The TRIG request returns information about various registers. The TRIG forms take
several extensions as follows:

TRIG; Returns the value of the Trigger Latch Register in the first integer of the result
array and the value FFF4(hex) in the second integer of the array. The format for
the Trigger Latch Register is:

7 3 S 4 3 2 4 Q0

TRIG ARM CHE - CHS CH4 CH3 CH2 CH1

The combined values of the TRIG bit and ARM bit are defined as:

RIG AR Definition

0 Inactive

1 Armed to Detect Trigger (program execution only)
0 Outpuiting Triggers

1 Semi-Sync Ouiput (program execution only)

When executing a program, the ARM bit will be set while waiting for the
conditions of your ARM command to be met. If you had programmed a
SEMI trigger, the TRIG bit will also be set while awaiting the completion of
the handshake.

The CHB8-CH1 bit (channels 6-1) values indicate if trigger inputs have
been latched. In immediate mode, the channel bits remain set until you
issue an ARM command. When executing a program, the bits are cleared
on th? next microsequencer clock, therefore you may never detect them
as set.

-a-sco|-|

TRIG:REP; Retumns the number of trigger matches yet to be detected or output (Trigger
Repeat Counter) in the first integer of the result array and the value FFOO(hex) in
the second integer of the array.

TRIG:PER; Retumns the value of the Delay Counter in the first integer of the result array and
the Trigger Input/Prescaler register value in the second integer of the array. Refer
to the STCSTAT subsection "Making Requests in the Programming Languages"
for details on interpreting the results.

The Delay Counter resets to its initial value after counting down to 0. You can
use a flag after a wait in a program to verify the end of a delay or use the TRIG
request to verify the end of a trigger sequence.

TRIG:IN; Returns the Trigger Input/Prescaler Register in the first element of the result
array and FFF5(hex) in the second element of the array. The format for the first
element is as follows:

3-30 Trigger Master INTERFACES USER GUIDE

3.7

TRIG TRIG TRIG TRIG TRIG TRIG
CLK1 CLKD L INE LINE L INE LINE LINE L. INE

Note: The actual state of the trigger lines can be determined for diagnostic
purposes, however trigger detection is based on latched transitions.

WAIT

The WAIT request returns the value of the Delay Counter in the first integer and the
Trigger Input/Prescaler register value in the second integer. Refer to the section "Values
Returned by STCSTAT" for a discussion on interpreting the results.

The Delay Counter resets to its initial value after counting down to 0. You can use a flag
after a wait in a program to verify the end of a delay. The syntax for the WAIT request is
as follows:

WAIT;

STCLOAD

Use STCLOAD to load a binary file into Trigger Master program memory. The binary
file can contain up to 1024 bytes and will normally be generated by STCCOM.EXE (refer
to either Chapter 4 or the following STCDUMP command description). STCLOAD
accepts two arguments: the first argument is the file name to be loaded, and the second
argument is the variable to receive the status returned by the driver at the completion of
the command.

Calling STCLOAD from BASICA
The following program segment illustrates calling STCLOAD from BASICA.

930 FILEMAMBRS = "exam.dat”

1080 -

10920 PRINT "Load file "; FPILENAMES; " to Trigger Mastexr #Y; BRDNUM%
1100 CALL STCLOAD(FILENAMES, ERRNUM%)

1110 IF BRRNUM% THEN GOTC 2130

1120 -

Calling STCLOAD from C

The following program segment illustrates calling STCLOAD from the C programming
language.

c¢har file name[] = {"exam.dat"};

printf(*load file %2 to Trigger Master # 1\n",file_name);

atoload({file_name, &err);
if {(err l= NO_ERROR} err_handler(err)};

USING THE Trigger Master DRIVER 3 - 31

3.8

Calling STCLOAD from QuickBASIC and VisualBASIC

The following program segment illustrates calling STCLOAD from QuickBASIC and
VisualBASIC.

filename$ = “examp.dat"

PRINT “"Load file "; filemame$; " to Trigger Master #'; BrdNum
CALL stcload(filename$, rerr)
IF rarr <> NOERROR THEN CALL RrrorBxit{rerr)

Calling STCLOAD from TurboPascal and TurboPascal for Windows
The following program segment illustrates calling STCLOAD from TurboPascal.

const

FileName = ‘exam.dat’;
var

err: ErrorCodes;

stcload(FileName,err):;

STCTP.LIB is a special interface to TurboPascal that accepts a standard TurboPascal
string. STCLIB.DLL is a general DLL that expects so-called "C" strings. To send strings to
the DLL in TurboPascal for Windows, create a string with a NULL character on the end
outside the call, and pass the "second element" of the string in the call.

const

FileName = ‘exam.dat’ + #0;
vaxr

err: ErrorCodes;

stolead (FileName [1l],err);

STCDUMP

Use STCDUMP to store the contents of Trigger Master program memory into a file. You
can then use the STCLOAD command (previously described) to load the program back
into Trigger Master program memory. The STCDUMP command accepts two
arguments: the first argument specifies the file name and the second argument is a
variable that receives the status returned by the driver at the completion of the
command. The file will confain 1024 bytes in binary format.

Calling STCDUMP from BASICA
The follong program segment illustrates calling STCDUMP from BASICA.

930 PILEMAMES = “exam.dat"

940 PRINT "Save pregram in Trigger Master #"; BRDNUM%; " to file “; FILENAMES
950 CALL STCDUMP (FILENAMES$, ERRNUMS%)

960 IF ERRNUM% THEN GOTO 2130

Calling STCDUMP from C

The following program segment illustrates calling STCDUMP from the C programming
language.

3-32 Trigger Master INTERFACES USER GUIDE

char file_name[] = {"exam.dat"};

printf ("Save program in Trigger Master #0 to file %s\n",file_name);
stedump(file_name, &err);
if (arr 1= WO_RBRROR) err_bandler{erx);

Calling STCDUMP from QuickBASIC and VisualBASIC

The following program segment illustrates calling STCDUMP from QuickBASIC and
VisualBASIC.

filepame§ = "“examp.dat”

PRINT "Save program in Trigger Master #"; BrdMum; " to file "; filename$
CALL stedump(filename$, Trexr)
IF rerr <> NOERROR THEN CALL ErrorExit(rerr)

Calling STCDUMP from TurboPascal and TurboPascal for Windows

The following program segment illustrates calling STCDUMP from TurboPascal and
TurboPascal for Windows.

conat

FPileName = ‘exam.dat’;
var

err: BrrorCaodas;

stedump {FileNae, errx) ;

STCTP.LIB is a special interface to TurboPascal that accepts a standard TurboPascal
string. STCLIB.DLL is a general DLL that expects so-called "C” strings. To send strings to
the DLL in TurboPascal for Windows, create a string with a NULL character on the end
outside the call, and pass the "second element” of the string in the call.

const

FileName = ‘exam.dat’ + $§0;
var

err: Errorcodes;

stedump{PileName{l] ,exrxy);

USING THE Trigger Master DRIVER 3-33

Chapter 4
PROGRAMMING EXAMPLES

4.1

INTRODUCTION

This chapter presents programming examples for each of these languages supported by
Trigger Master: BASICA, C, QuickBasic, and TurboPascal.

Many of the programming examples check the status argument after each call; once the
program has been debugged, it may only be necessary to verify that the board is
available (following the STCINIT command). Both the STCCMD and STCSTAT
command set an integer to the position of the last character in the string that was parsed
by the driver. If a nonzero error is returned, check the position variable to see where the
error was encountered.

Most of the examples use a separate STCCMD call that contains a single command.
Using this method allows easier commenting of the code and assists in the debugging
process. You may include a single string with multiple commands in the STCCMD call if
you separate each command with a semicolon.

Notes: The string length limits are 255 characters for BASICA and 256 characters
for TurboPascal.

Trigger Master executes commands as they are parsed. If Trigger Master
encounters an error in a multiple-command string, it executes all valid
commands prior to the command in error.

In an STCSTAT call, Trigger Master returns after the first semicolon (Trigger Master can
only process one request per request string).

PROGRAMMING EXAMPLES 4-1

4.2 BASICA LANGUAGE EXAMPLE

10

20

30

40

50

60

70

ao

90

100
110
120
130
140
150
160
170
180
1390
200
210
220
230
240
250
260
270
280
250
300
310
320
aso
340
350
260
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

' EXAMPGW.BAS" , &
CLS: EBY OFF
A2 3223222312 2210112212222 12 311121223131 11 1322211121223 13213212%]
r
‘ BXANPGW.BAS
1]
! Uses two STC boards to demonstrate interfacing the driver
* GW Basie.

’ to wait for 500 trigger imputs on line 1 and then generate
* a delay of .2 a3, The program is dumped to a file.

‘ The second STC isg initialized as #1. The program is loaded
’ and started to execute.

‘ Control is ahifted back to STC #0 which is told to generate
¢ 500 triggers opn line 1.

‘ Finally board 1 is monitored until it f£inishes,

I
IR RAR AR R AR R AR AN RN R R R R NI RANERERRASRANRRRRARE SRR

F

+ Insetall BASICA Error Handler
OM ERROR GOTO 2200
v
CLEAR ., 62*1024 ! laave 2048 for interface
DEF SEG = 0
8G = 256 * PBER(&H511) + PRBE(&HS10)
86 = 86 + &H1100
DRF SEG =SG ‘ DBEF SEG must be get = SG in order
* to call into the driver
BLOAD "STCBAS.BIN", O
* The following integer variables are set to the offset
¢ yalues required

ATCINIT = 0 ¢ Initialize STC

STCSET =3 ¢ Switch to already initialized sTC

STCCMD = 6 * Send command to STC

S8TCSTAT =9 ! Request information from STC

STCLOAD = 12 ‘ Load a program in STC memory for file
2TCDUMP = 15 ‘' Save STC memory to a file

¥’

‘mast initialize strings bhefore call {also sets count)

INITS = STRINGS(80,32) ‘string t6 send commands and requests
L4

ERRNUM%: = 0 ‘error return variable

LASTCHR% = 0 ‘position of last character parsed by driver
MYVAL# = 0! / value returhed from delay count register

SCALE%

L

0 ‘ value from prescaler register

BASSEG%=~1 ’ flag for buffer transfers intec BASIC’s
¢ data segment.

s

L]

DIM RESULT%(2) ¢ integer array to heold results f£rom STCSTAT

4 -2 Trigger Master INTERFACES USER GUIDE

g60 *

570 PRINT

EBO -

590 A I 2 TR SRR 2 222X 22 X2 2 £ Xk INITmIzE sfrc 0 EEERRARETAEARNRTERTANE
600 -

610 BRDNUM% = 0

€20 BRDADDR% = &H310

630 PRINT "Initialize board "; BRONUM%; " at address “;
640 PRINT HEXS (BRDADDR%); " hex"

650 CALL STCINIT(BRDNUM%, BRDADDR%, ERRNUM%)

660 IF BRRNUMS THEN GOTO 2110

670

680 IR ERRARAREERNER Pnocm s!rc o moRY ABENAEERXRA R TR LA RGN
€90

700 INITS="begin;" ! begin program

710 PRINT "Send "; INITS; " command"
720 CALL STCCMD (INITS, ERRNUM%, LASTCHR%)
730 IF ERRNUM% THEN GOTO 2110

740 ¢
750 INITS="arml:rep500;" ‘ wait for 500 triggers on
760 ¢ line 1

770 PRINT "Send "; INIT$; " command"

780 CALL STCCMD(INIT$. ERRNUMS%, LASTCHRS)

760 IF BRRNUM% THEN GOTO 2110

800 -

810 INIT$="wait .2a;" ’ wait a tenth of a second
820 PRINT "Semnd "; INITS; " command"

830 CALL STCCMD(INITS, ERRNUM%, LASTCHR%)

840 IF ERRNUN% THEN GOTOD 2110

850

860 INITS="end;" ‘ apnd program

870 BRINT "Send "; INITS; " command”

880 CALLL STCCMD(INITS, ERRNUMS%, LASTCHRS)

850 IF ERRNUM% THEEN GOTO 2110

800

910 IREFRERAERA R AR TN SAW Pmm To moRY RREBREXRNBRAR DTN TN RS
820

930 FILENAMES = “exam.dat"

940 PRINT "Save Drogram in STC #"; BRDNUM%; " to file ";FILENAMES
950 CALL STCDUMP (FTLENAMES, ERRNUM%)

960 IFP ERRNUM% THEN GOTO 2110

a70 -

PROGRAMMING EXAMPLES 4-3

930 IARREARERERRT Rk RRR INITmIzE omn sTc AEEETRARAARERE DR AR AR

990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1690
1100
1110
1120
1130
1140
1150
1is0
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
14890
1450
1500
1510
1520
1530
1540

BRDNUM% = 1

BRDADDR% = &H314

PRINT “Initialize beoard "; BRDNUM%; * at address ";
PRINT EEXS (BRDADDR%); " hex"

CALL STCOINIT(BRDNUM%, BRDADDR%, ERRNUM%)

IF ERRNUM% THEN GOTC 2110

4

FRRTARARNEEERARAN LOAT) PROGRAM TO MEMORY WHERSASARENARRANRAR
PRINT "Load file "; FILENEMES; " to STC #"; BRDNUM%

CALL STCLOAD (FILEMAMES, ERRNUM%)

IF ERRNUM% THEN GOTO 2110

[

IRRENRRERATRERREEN ng an EX'BCU'I'ING m 1 ARABAWNRRENKRR
’

INITS="x%;" " end program

PRINT "Send "; INITS: " command"

CALL STCOCMD{INITS, ERRNUM%, LASTCHER%)

IF BRRNUM% THEN GOTC 2110

.

tRRERNRRRERE R A um Eo BRD 0 m sm TRIGGEES RERRAENETRR
BRDNUM% = 0
PRINT “Switoh driver countrol back to STC #"; BRDNUM%
CALL STCSET(BRDNUM%, ERRNUM%)
IF ERRNUM% THEN GOTC 2110
INITSs"trigl:rep500:per .3m;” ~* generate 500 trigger
+ 0.3 millisecs apart
PRINT "Send "; INITS; " command"
CALL STCCMD (INITSH, ERRNUM%, LASTCHR%)
IF ERRNUM% THEN GOTO 2110

,

sexxsatses 0o BACK TO BRD 1 AND WALT FOR TRIGGERS *hsstrrees
r

BRPNUM% = 1

PRINT "Switch driver control back to STC #Y; BRDNUM%
CALl STCSET {PRDNUM%, BRRNUM%)

IF ERRNUM% THEN GOTO 2110

INIT§$="trig:rep;"

CALL STCSTAT{INITS, ERRNUM%, LASTCHR%, RESULTS%(0)})
IF ERRNUM% TEEN GOTO 2110

PRINT"Waiting for triggers; REP = ";RESULT%(0)

IF RESULT%(0) > 0 GOTO 1410

r

PRINT

PRINT "NOTE: Counts = 0 at completion“

PRINT

L]

FrRRERRkR kNN RR ml"[l FOR DEI;AY KEENERARNEE AN RN TERRARNALCEE RN AR
r

INIPS="wait ;"

CALL STCSTAT(INITS. ERRNUM%, LASTCHR%, RBSULT%(0})

IF ERRNUM% THEN GOTO 2110

4-4 Trigge

r Master INTERFACES USER GUIDE

1550 PRINT“Wailting for time out'

1560 PRINT"Time Remaining = *;

1s5%0

1580 *Correct for BASICA‘s lack of unsigned
1590 MEYVAL# = RESULT%(0)

1600 IF RESULT%(0) < O THEN MYVAL# = 65536! + MYVAL#
1610 SCALE% = RESULT% (1) AND &HCO

1620 IF SCALR% = &HCO THEN MYVAL# 1000 *MYVAL#
1630 IF SCALE% = &EBO THEN MYVAL# = 100!*MYVALE
1640 IP SCALE% = &H40 THBEN MYVAL# = 10!*MYVAL#
1650 IF MYVAL# »>= 1000! THEN GOTO 1680

1660 PRINT MYVAL#;" usec®

1670 GOTO 1740

1680 MYVAL# = MYVAL#/1000!

1690 IF MYVAL# »>= 1000! THEN GOTOD 1720

1700 DRTNT MUVUZATH. ! maomit
-l WY DAeataA Fhd VARl § e

1710 GOTC 1740

1720 MYVAL# = MYVAL#/1000!

1730 PRINT MYVAL§;" sec

1740 ¢

1750 INITS$="status;"

1760 CALL STCSTAT (INITS, ERRNUM%, LASTCHR%, RESULT#%({0))
1770 IF ERRNUM% THEN GOTC 2110

1780 PRINT "Checking status = "; RESULT%(0)

1790 IF (&H1 AND RESULT%(0))>0 GQTCQ 1520

1800

1810 PRINT

1820 PRINT “Timed ouc."

1830 PRINT

1840 -

1850 INITS=“wait:;"

1860 CALL STCSTAT(INITS, BRRNUM%, LASTCHR%, RESULT%(0))
1870 IF ERRNUM% THEN GOTO 2110

1880 PRINT"Time Read back = ";

1880 ¢

1900 ‘Correct for BASICA‘s lack of unsigned

1910 MYVAL# = RESULT%(0)

1920 IP RESULT%(0) < 0 THEN MYVAL# = 65536:¢ + MYVAL#
1930 SCALR% = RESULT%(1l) AND &LHCO

1940 IF SCALR% = &HCO THEN MYVAL# = 10001*MYVAL#
1950 IP SCALE% = &HS0 THEN MYVAL# = 100!*MYVAL#

1960 IF SCALE% = &H40 THEN MYVAL# = 10!*MYVAL#

1870 IF MYVAL# »>= 1000! THEN GOTO 2000

1880 PRINT MYVAL#;" usec”

1990 GOTO 2060

2000 MYVAL# = MYVAL#/1000!

2010 I¥ MYVAL# >= 1000! THEN GOTO 2040

2020 PRINT MYVAL#:" msec”

2030 GoTo 20860

2040 MYVAL# = MYVAL#/1000!

2050 PRINT MYVAL#;" sac

2060

2070 PRINT

2080 PRINT"NOTE: TIME = ORIGINAL DELAY AT COMPLETION.™
2050 BND

2100 -

2110 tERRRAREERR A AR A RA AR RN ERROR EANDLER AEREAEERRRF TR RS

2120 -

PROGRAMMING EXAMPLES 4-5

2130 PRINT "Driver returmned *;ERRNUM%

2140 *

2150 ¢

2160 -

2170 PRINT

2180 PRINT

2190 STOP

2200 -

2210 FXRREAERARRRANIEA AR ER BASICA xmon mm ERANAER RN AR
2220 *

2230 PRINT "IEREE Error In lLine ";BRL; "Error Number = ":;ERR
2240 STOP

4-6 Trigger Master INTERFACES USER GUIDE

4.3

C LANGUAGE EXAMPLE

IFALAAL A AR LS AL LS AL RER A s R AL s o bttt il il st i sttty L]

1!

// exampe.c

/"

// Uses two STC boards to demonstrate interfacing the driver in C
r

/l/ The first S8TC is initialized as #0 and loaded with a program
’7 to wait for 500 trigger inputs on line 1 and then generate
/7 a dalay of .2 8. The program is dumped to a file.

1/

I&s The second STC is initialized as #l. The program is loaded
1/ and started to execute.

1

/! Control is shifted back to STC #0 which is told to generate
174 500 triggers on line 1.

17

l/ Pinally control is returned to #1 where the progress of the
/7 program is monitored.

/7

/,*l***ttt*il‘tI’ttt"t*tttl.ﬁ'Qt*t""ttit.tt**fﬂ**.l**ﬂ‘lﬂ'"'.f‘tﬁt*

#include <stdic.h>

#incliude <string.h>
#include <graph.h>

#include <stdlib.h>
#include "stc.h"

i

// value returned by stcstat

7!

unsigned int ret_regl[2}, ret_valuel2];

char

char
char
char

chax

// status values returned

/7 Lf [0] is OxEE££0 -»> [1] is ARM MASK

/7 if [0] is Ox£££1 -»> [1) is POLARITY MASK
// if [0] is OxE££2 -> [1] is FLAG REG

/7 if {0) ia Oxf££3 -»> [1] is STATUS

// if [0)] is Oxfffd -»> [1) is TRIGGER LATCE
/f if [0] ia Oxfff5 -» {1] is TRIG IM/PRE
/7 1f [0) is 0x££00 -> [1] is REP COUNTER
/7 1f [0) is 0x££01 -> [l1l]) is PROG COUNTER
/7 i€ [0} ie Ox££02 -» (1] is LOOP COUNTER
/f if [0] is Ox££03 ~> {1] is CUTER LOOF COUNT
// otherwise [1] is prescaler and

f/ 10} is unsigned time

file name[] = {"exam.dat"};

begin cmd[1 = {"begin;"}; // begin program

arm_ om3[] = {("arml:rep500;"}; // wait for 500 triggers on lipe 1
wait_ecmd[] = {"wait .28;%}; // wait a teath of a second
and_cmd([] = {"end;"}; // end program

x_emdf] = {"x;"}; // start execution

trig. omd[] = {"trigl:rep500:per .3m;"};

// generate 500 triggers .3 millisecs apart

PROGRAMMING EXAMPLES 4-7

Iy
// functicn prototype for error handler
/7

void err_handler(int err_num};
void main(}
{
int arr; // int to receive error number
int pos; // int to receive exit position of parser

float time_remaining; // time from delay count and prescaler
_clearscreen(_GCLBARSCREEN); // clear entire screen
printf ("BEXAMPC.C\n\n"};

printf("Initialize board 0 at address 310 hex\n");
steinit{0,0x310, &err);
if (err != NO_ERROR) err_bhandler{err);

printf ("Send %s command\n",begin cmd);
stoomd (begin_cmd, &err, &pos):
if (err != NO_ERROR) err_handler{err};

printf("Send %s command\n",arm_cmd);
steemd {arm_emd, &err, &pos);
if (err != NO_BRROR) err_handler(err);:

printf ("Send %s command\n",wailt_cmd);
stcomd (wait_omd, &err, &pos);
if (err != NO_BRROR) err handler(err);

priotf{"Send %s command\n",end_ocmd};
steend (end_omd, &err, &pos);
if (err != NO_ERROR) err_handler{err};

printf("Save program in STC #0 to file %s\n",file_nsme);
stedump (£ile_name, &err);
if {exrr != NO_ERROR) err_handler(err);

printf {"Initialize board 1 at address 314 hex\n");
steindt (1,0x314, &err) ;

if (exrr != NO_ERROR) err_handler(err):;

printf ("Load file %8s te 8TC # 1l\n",file_name);
steload{file_nanme, &err);

if (err != NO_ERROR)} err_handler(err):

printf("Send %s command to start execution “,x_cmd);
printf("of sTC #1i\n");

stcomd {x_cmd, &err, &pos);

if (err != NO_ERROR) err_ handler(err):

printf ("Switch driver control back to STC #0\n");
stoset (0, &exrr);
if {err != NO_ERROR)} err_handler{err);

printf("Send %s command to send triggers “,trig_omd);
printf("from STC #0 to STC #1l\n");

steomd (trig omd, &err, &pos);

if (exry != NO_ERROR) err_handler{err):;

4-8 Trigger Master INTERFACES USER GUIDE

priptf (“Switch driver contrel to STC #1\n"):
stcset (1, &err) ;
if (err != NO_ERRCR) err_handler(err);

de
{
steoastat ("trig:rep;", &err, &pos,ret_valua);
printf ("Waiting for triggers; REP =
if (err != NO_RBRROR) err_handler({err);
}
while (ret_walue[0]>0); // wait for trigger inputs
do

{
stestat ("wait;", &err, &pos,ret_value);

printf("Time remaining = ");
if (err != NO_ERROR) err_handler(err)}:;
time_remaining = (fleat) ret_value(0];
switch (ret_valuell] & Oxecl){
case 0xc0:{
time_remaining *= 1000;
break;
}
case 0xB0:{
time_remaining *= 100;
break:;
}
case 0x40:(
time_remaining *= 10;
break;
}
}
if (time_remaining < 1000)({
printf ("%.0f usecs\n",time_remaining);
}
else{
time _remaining = time_remaining/1000.0;
if (time_remaining < 1000){
printf ("%.4f msecs\n",time_remaining);
}
else{
time_remaining = time_remaining/1000.0;
printf("%.4f secs\n“,time_remaining):
}
}
gtestat ("status;", &err, &pos,ret_rag);
printf ("Checking status = %x hex\n",ret_regl0]);
if {err != NO_ERROR) err_handlexr{err);
}

while (0x01 & ret_regi{0]}; // wait while program is

%d\n", ret:_value0]};

exacuting

PROGRAMMING EXAMPLES 4-9

stestat ("walit;", &err, &pos,ret_value);
printf ("\nTimed out. Wait returns %);
if (exy != NO_ERROR) err_handler (err):;
time_remaining = (float) ret_wvalue([0];
switch {ret_value[l] & 0xec0){
case Oxc0:(
time_remaining *= 1000;
break:
}
case 0x80:{
time remaining *= 100;
break;
}
case 0x40:
time_remaining *= 10;
break;
}

}
if (time_remaining < 1000){
printf ("%.0f usecs\n",time_remaining);
}
else{
time_remaining = time_remaining/1000.0;
if (time_reamaining < 1000){
printf(v%.4f msecs\n",time_remaining):
}
alse{
time_remaining = time_remaining/1000.0;
printf{"%.4f sews\n",time_remaining);
}
}

printf ("\nNOTE: At completlion WAIT; returns the original delay.\n");
} /7 BEnd of main
void err_handler{int err_num)
{

printf ("error = %s\n',error_maglerr_num]);
exit (0);

4-10 Trigger Master INTERFACES USER GUIDE

QuickBASIC EXAMPLE

IR AR R R LR AR R R R AR A AR AN AR R AR AN TN TR R AN AN NIRRT AR AR AR

EXMMPOR . BAS

QuickBASIC for versions above QuickBASIC versions 4.0 and

greater.

'
[
/ Uses two STC boards to demonstrate interfasing the driver in
I

The £irst STC is initialized as #0 and loaded with a program
to wait for 500 trigger inputs on line 1 and then generate
a delay of .2 s. The program is dumped to a file.

The sacopnd STC is initialized as #1.

and started to execute

The program is loaded

Control is shifted back to STC #0 which is told te generate

500 triggers on line 1

Finally control is returmed to #1 where the progress of the

INCLUDE FILE : STCQB.BI

QuickBASIC ENVIROMMENT :

Use DOS command QBx /L STCQBx [filename.bas)
Whers x will be 4 or 7 depending on whether your

’

r

’

.

L

L

L

.

L

’

’

! program is monitored.
’

¢

i’

L

r

.

! versicn is 7 or
L
L

lesa,

RN AR AR TN RN A AR AR RN I R R RERA A AR AR NN AN R ANAEARRRTRARNNEN

DECLARE SUB ErrorExit (rerr%)

'$INCLUDE: ‘steqgb.bi-

' valuea returnad by stoatat

DIM RetVal(2) AS INTEGER

if [0] is
if (0] is
if [0] is
if [0] is
if [0] is
if (0] is
if [0] is
if [0] dis
if [0] is
if [0} is
otherwise

L T N T TN

filename$ = "examp.dat"

beginemds$ = "begin;"
armemd$ = "arml:rep500;"
waitomd$ = "wait .2s;"
endemds = “end;"

!ms = “x; [

trigemds$ = vtrigl:reapS00:per .3m;"

OxEE£E0D
Oxfff1
OxX£L££2
Ox£fff3
OxfEfd
Ox£L££5
Ox££00
OxE£01
0x££02
0x££03
(1] i=

-
-
-
-
->
-
-
-
-
-

status values returned

(1]
[11
[11
[1]
[1]
[11
(1]
[1]
[1]
[1]

is
in
is
is
is
ia
is
is
is
is

praescaler

[0] is unsigned time

ARM MASK
POLARITY MASK
PLAG REG
S'TATUS
TRIGGER LATCH
TRIG IN/PRE
REP COUNTER
FROG COUNTER
LOOP COUNTER
QUTER LOOP COUNT
and

‘ begin program
* wait for 500 triggers on line 1
! wait a tenth of a second

end program

atart execution
! generate 500 trigger .3 milliseos apart

PROGRAMMING EXAMPLES

DIM rerx AS INTEGER
DIM post AS INTERGER
DIM Brd¥um A& INTEGER
DIM brdaddr AS INTEGER
DIM scale AS INTEGER

TimeRemaining! = 0
cLs ‘ glear entire screen

FRINT "EXAMPQB.BAS"
FRINT

BrdNum = 0

brdaddr = &H310

PRINT "Initialize board "; BrdNum; " at address Y;
PRINT HEX$(brdAddr); " hex®

CALL steinit (BrdNum, brdaddr, rerr)

IF rerr <> NOBRROR THEN CALL ErrcrExit (rerr)

PRINT "Send "; beginomd$; " command"
CALL stoomd (begincmd$, rerr, post)
IP rerr <> NOERROR THEN CALL BErrorExit (rerr)

FRINT "Send “; armemd$:; " command"
CALL stceomd (armemd$, rerr, post)
IFP rerr <> NOERROR THEN CALL ErrorBxit (rerr)

PRINT "Send "; waitomd$; " command"
CALL stcomd({waitomd$, rerr, post)
IF rerr <> NOERROR THEN CALL ErrorBExit (rerr)

PRINT "Send "; endemd$; " command"
CALL stcemd(endemd$, rerr, post)
IF reorr <> MOERROR THEBN CALL BrrorExit(rerr)

PRINT “"Save program in STC #*; Brdium; " to file "; filemame$
CALL stcdump(filename$, rerr)
IF rerr <> NOERROR THEN CALL ErrorBExit(rexr)

FRINT

BrdNum = 1

brdaddr = &H3I14

PRINT "Initialize board "; BrdNum; " at address ";
PRINT HEXS$ (brdaddr); " hex"

CALL stoinit (BrdNum, brdAddr, rerr)

IF rerr <> NOERROR THEN CALL BrrorExit (rexrr)

PRINT "Load file "“; filename$; “ to STC #"; BrdNum
CALL stcload(filename$, rerr)
IF rerr <> NOBRROR THEN CALL ErrorBxit (rerr)

PRINT "Send "; xoemd$; * command to start execution "
PRINT “of STC #%; Brdium

CALL stccemd (xcmd$, rerr, post)

IF rerr <> NOBRROR THEN CALL BrrorExit (rerr)

4-12 Trigger Master INTERFACES USER GUIDE

PRINT

BrdNum = 0

PRINT “Switch driver control back to STC #"; BrdNum
CALL stcset (BrdNum, rerr)

IF rerr <> NOERROR THEN CALL ErrorBxit (rerr)

PRINT "Send "; trigemd$; * command to send triggers *
PRINT “from the firat STC to the second”

CALL stccmd(trigemd$, rerr, post)

IF rerr <> NOERROR THEN CALL BrrorExit {rerr)

PRINT

BrdMum = 1

PRINT "Switch driver comtrel to STC #v; PrdNum
CALL stcset (ErdNum, rexr:r)

IF rerr <> NOERROR THEN CALL BrrorExit (rerr)

DO
CALL stestat("trig:rep;", rerr, post, RetVal{0})
FRINT "Waiting for triggers; REP = "; RetVal(0)
IF rerr <> NOBRROR THEN CALL ErroxrExit (rerr)
LOOF WHILE (RetVval(0) » 0)

PRINT
PRINT "NOTE: Counts = 0 at completicn."
PRINT

DO
CALL stcstat{"wait;", rerr, post, RetVal(0})
PRINT "Waiting for time cut”
IF rerr <> NOERROR THEN CALL ErrorBxit (rexrr)
[
‘Correct for (uickBASIC’'s lack of unsigned
TimeRemaining = RetVal(0)
r

IF RetVal(0) < 0 THEN TimeRemaining = 65536! + TimeRemaining
PRINT “Time Remaining = *;
scale = RetVal(l) AND &HCO
SELECT CASE scale
CASE &HCO
TimeRemaining = 1000 * TimeRemaining
CASE &B80 .
TimeRemaining 100 * TimeRemaining
CASE &HA4O0
TimeRemaining = 10 * TimeRemaining
END SELECT

IF (TimeRemaining < 1000) TEEN
PRINT TimeRemaining; “useca"
ELSE
TimeRemaining = TimeRemaining / 1000!
IF (TimeRemalning < 1000) THENM
PRINT TimeRemaining; "“msecs"
ELSE
TimeRemaining = TimeRemaining / 1000!
PRINT TimeRemaining; "sens"
END IF
END IP
CALL stostat("status;", rerr, post, Retval(0))
PRINT “Checking status = “; RetVal{0)
IF rerr <> NOERROR THEN CALL BrrorExit(rerr)
LOOF WHILE (&%H1 AND RetVal{0)}

PRINT

PRINT "Timed out."

PRINT

CALL stecstat{“wait;", rerr, post, Retval(D))
IF rerr <> NOERROR THEN CALL ErrorExit (rerr)
r

'Correct for QuickBASIC’s lack of unsigned
TimeRemaining = RetVal({D)

r

PROGRAMMING EXAMPLES

4-13

IF RetvVal(0) < 0 THEN

PRINT "Time Remaining
scale = Retval(l) AND
SELECT CASE scale
CASE &HCO
TimeRemaining
CASE &HBO
TimeRemaining
CASE &HA0
TimeRemaining
END SELECT

TimeRemaining = 65536! 4+ TimeRemaining

- M
H

&HCO

1000 * TimeRemaining
100 * TimeRemaining

10 * TimeRemaining

IF (TimeRemaining < 1000) TEEN
PRINT TimeRemaining; "usecsa"

BLSE

TimeRemaining = TimeRemaining / 1000!
IF {TimeRemaining < 1000) THEN
PRINT TimeRemaining; “msecs"

ELSE
TimeRemaining =

TimeRamaining / 1000!

PRINT TimeRemaining; “secs"

END IF
END IF

PRINT

PRINT "NOTE: Time = original delay at completion.®

END

SUB ErrorBxit (rerr%)

PRINT “error = "; BrrorMsg$(rerr%)

END
END SUB

4-14 Trigger Master INTERFACES USER GUIDE

4.5

TurboPascal EXAMPLE

AR AR AR AR AR R R R AR RN R R R AR AN R AR RN AN AN I T AT A AN E AR RS ARSI R AR NS

examtp.pas

Uses two STC boards to demonstrate interfacing the driver in
TurboPascal.

The first STC is initialized as #0 and loaded with a program
to wait for 500 trigger imputs on line 1 and then generate
a delay of .2 s. The program is dumped to a file.

The second STC is initialized as #l1. The program is loaded
and started to execute.

Control is shifted back to 8PC #0 which is told to generate
500 triggers on line 1.

Fipally control is returmed to #1 where the progress of the
program is monitored.

LI 2 S22 SRR Rt R R RS YT R I XY S 2T Y R

}
program examptp;

{3I stetp.ine) { Include function prototypes for functions in sctp.obj }
{$L stetp.obj} { Link with stetp.cbj }

consat

Pile¥ame = ‘sxam.dat’:;

BaginCtmd = ‘begin;‘:; { bagin program)}

ArmCmd = ‘arml:rep500;‘; { wait for 500 triggers on line 1 }

Waitcmd = ‘wait .28;‘; { wait a tenth of a second)}

Endemd = ‘end;’; { end program}

XComd = ‘X;’; { start execution }

TrigCmd = ‘trigl:rep500:per .3m;’; { gemerate 500 triggers, .3 millisecs apart)
var

{ value returned by stcstat }

RetReg: array [0..1] of WORD;
RetValue: array [0..1] of WORD:

{ atatus values returned
if [0] is Ox£££0 -» [1l] is ARM MASK
if (0] ia O0xfffl -» [1] is POLARITY MASE
if [0) is Ux£££2 -» [1]) is FLAG REG
if [0] is Oxfff3 -» [1] is sSTATUS
if [0) dis Ox£f£f4 -> [1l] is TRIGGER LATCH
if (0] is Oxfff5 -> [1] iz TRIG IN/PRE
if [0] is Ox££00 -> [1l] is REP COUNTER
if [0] is Oxff01 -»> [1] ie PROG COUNTER
if [0] ia Oxf£02 -»> [1] is LOOP COUNTER
if (0] is Ox££03 -> [1] is QUTER LOOP COUNT .
otherwise [1] is prescaler and [0] is unsigned time }

err: ErrorcCodes; { integer te receive srror number }
pos: Word; { integer to receive exit position of parser }
TimeRemalning: Real; { time from delay count and prescaler }

BrrorMsg: array[BrrorCodes] of string [26] ;
procedure ErrHandler (ErrNum: Errorcodes);

begin
Writeln(‘error = /, BrrorMsg[EBrrMum]);
Halt

end;

begin

PROGRAMMING EXAMPLES

4-.15

(* _clearscreen{ GCLBARSCRBEN); //

BrrorMag [NO_ERROR

ErrorMsg [UNRECOGNIZED_COMMAND
ErrorMsg [INCOMPLETE_COMMAND
BrrorMag [ARM NEEDS_LINE
BrrorMag [NERD_SEMI_COLON
ErrorMeg [OUT_OF CHARS
BrrorMeg [NO_COMMAND
ErrorMsg [NEED_ANOTHER_LINE
ErrorMsg [ILLEGAL EXTEN
Errorisg [REF_OVER_RNG
ErrorMsg [HOT _IN_IMMED MODE
BrrorMsg [ADD_OVRER_RKG
ErrorMsg [NOT_IN_PROG_MODE
ErrcrMsg [DO_NEEDS_VALUE
ErrorMsg [DO_OVER_RANGE
ErrorMag [EXCEEDS_DC_LEVEL
ErrorMsg [FLAG_OVER _RANGE
BrroxrMasg [NOT_IN_LOCP?

BryrarMas (WTATT MNIFEDS X

BrrorMsg [WATT NZEDS_UVALUE
BrrorMeg [X_OVER_RANGE

ErrorMag [TIME_OVER_RESOLUTION
BrrorMag ['TIME_CVER_RANGE
ErrcrMag [NEED_TIME_SCALE
ErrorMeg [NEED TIME_VALUE
BrrorMag [SECS_OVER_RNG
BrrorMeg [MSECS_OVER_RNG
BrrorMsg [USECS_OVER_RNG
BrrorMeg [SECS_UNDER_RNG
BrrorMag [MEECS_UNDER_RNG
BrrorMeg [UBECS_UNDER_RNG
ErrorMag [TRIG_NEEDS_LINE
ErrorMsg [NEED_EXTENSTON
BrrorMag ([FER_REQUIRES REF
ErrorMsg [REP_NBEDS_PRR_OR_SEMI

ot bl A Rmd kel hd A b Ad e bd hd A bd bl bd hed bed bl hd bk e bt Ved fed fed Gt M Bk bl Bk b

|
]

ErrorMag [STC_PREVIOUSLY INITIALIZED]

BrrorMeg [STC_NOT PRESENT
ErrorMsg [STC_ALREADY ACTIVE
ErrorMag [4TC_NOT INITIALIZED
ErrorMsg [STC_NUM_OUT_OF_RNG
BrrorMag [DUPLICATE_STC_ADDR
ErrorMag [UNRESOLVED LOOP

BrroxMag [FILE _NAME_TOC_ LONG
BrrorMsg [PROEB_READING_FILE
ErrorMsg [PROB_OPENING READ FILE
ErrcorMag [PROE_WRITING_FILE
ErrorMayg [PROE_OPENING_WRT_FILE
BrrorMsg [FILE_NOT_FOUND
ErrorMsg [PATH_NOT_FOUND
ErrorMag [TOO_MANY OFPEN_FILES
BrrorMsg [ACCESS_DENIED
ErrorMsg [INVALID_ACCRSS_CODE
ErrorMsg [CNRECOGNIZED REQUEST
ErrorMsg [DRIVE_NOT_READY
ErrorMag [HO _BEP _WITH SEMI

T T N N T]

— o

alear entire screen®)

1

n % n n

‘NC BRROR';
‘UNRECOGNIZED COMMAND' ;
fINCOMPLETE COMMAND’;
'ARM NEEDS LINE’;
'NERD SEMT COLON’;
‘OUT OF CHARS';

NO COMMAND';

‘NEED ANOTHER LINE';
‘ILLEGAL EXTEN’;

‘REP OVER RNG‘;

‘NOT IN IMMED MODRE';
‘ADD OVER RNG‘;

= ‘NOT IN PROG MODE';
= ‘DO NBEDS VALUE';

‘DO CVER RANGE';

‘EXCEEDS DO LEVEL';
‘FLAG OVER RANGE':;
‘NOT IN LOOP'

H
fUATH NUDTRO UYATIIE/ .
Pkt e ATAMARA RS ¥ iddbida

X CVER RANGRE';

= ‘TIME OVER RESOLUTION';

‘TIME OVER RANGE';
‘NEED TIMB SCALE';
NERD TIME VALUB';
'SECS OVER RNG';
‘MSECS OVER RNG':
‘USECS OVER RNG';
'SECS UNDER RNG';
‘MSECS UNDER RNG';
‘USECS UNDER RNG';
'TRIG NEEDS LINB';
‘NEED EXTENSION';
*PER REQUIRES REP';
‘REP MEEDE PER OR SEMI';

f8TC PREVICUSLY TNITIALIZED';

‘gTC NOT FRESENT’;

*STC ALREADY ACTIVE';
STC NOT INITIALIZED';
'STC NUM OUT OF RNG';

= ‘DUPLICATE ETC ADDR'’:

"UNRRSOLVED LOOP‘;
‘PILE NAME TOC LONG';
PROB READING FILE';
‘PROB OPENING READ PILE';
‘PROB WRITING FILE';
‘PROB OPENING WRT FILE’;
‘PILE NOT FOUND-;

*PATE NOT FOUND';

‘TO0 MANY OPEN FILES';
‘ACCESS DENIED';

'INVALID ACCESS CODE’;
'UNRECOGNIZED REQUEST’;
'DRIVE NOT READY';

'NO REP WITH SEMI';

4-16 Trigger Master INTERFACES USER GUIDE

ErrorMsg [INSUFFICIENT_PROGS_MEMORY] := /INSUFFICIENT PROG MBMORY’;
ErrorMsg [PROB_CREATING WRITE_FILE] := ‘PROB CREATING WRITE FILE';
ErrorMag [IN_RUN_MODE] := “IN RUN MODE';
ErroxMeg {ADDRESS_KXCEBDS_3FC 1 := ‘ADDRESS EXCEEDS 3FC’;

Writeln(’'EXAMPTP.PAS’);
Writeln:

Writeln(Initialize board (0 at addreas 310 hex’);
Writeln;

stoinit (0,$310,exr);
if (err <> NO_ERROR)
then BErrHandler(err);

Writeln(‘Send ’,BeginCmd,’ command’);
stcomd (Begintmd, exrr, pos);
if (exr <> NO_ERRCR)

then ErrHandler (exzT):;

Writeln(’Send ’,ArmCmd, ‘ command‘};
stecmd (ArmCmd, err. posl;
if (err <> NO_BRROR}

then ErrHandler (err):

Writeln(’Send /,WaitCmd,’ command‘);
stoond (WaitCmd, erx, pos};
if {(err <> NO_ERRCR)

then ErrHandler (err);

Writeln(’Send ’,EndCnd,’ command’);
stcemd (EndCmd, exr, pos);
if (err <> NO_ERROR)
then BrrHandler{arr):;
Writeln(’Sava program in STC #0 to file ‘,FileName);
stocdump (FileName, err);
if (err <> NO_ERROR)
then ErrHandler (err):;

Writeln(’/Initialize board 1 at address 314 hex’);
steinit(1,$3148,exx};
if (err <> NO_ERROR)

then ErrHandlex (err);

Writeln(‘Load £ile ‘,FileName,’ to STC # 17);
stcload (FileNama, err);
if (err <> NO_ERRCR)

then ErrHandler(err);

Write(’Send ‘,XCmd,‘ command to start executlon 7);
Writeln(‘ef STC #1');
stoeemd (XOmd, err, peos);
if (err <> NO_BRROR)
then ErrHandler (err);

PROGRAMMING EXAMPLES

Writeln(’Switch driver control back to STC $#0/);
stcset(o}err);
if (err <> NO_ERROR)

then ErrHandler{err}:

Write(’Send ’,Trigcmd,’ command to send triggers ‘);
Writeln('from STC #0 to STC #17);
stecoemd (TrigCmd, err, pos):
if (err <> NO_ERROR)
then ErrHandler{err):

Writeln(’Switch driver control to STC #17);
steset (1,erx):;
if (err <> NO_ERROR)

then ErrHandler({err):

repeat
stostat(’'trig:rep:’, err, pos.RetValuel[0]);
Writeln(’'Walting for triggers; REBP = ‘,RetValue(0]):
if (err <> NO_ERROR)
then BrrHandler(err):
until (Retvalue{0]=0); (* wait for trigger inputs *)

4-18 Trigger Master INTERFACES USER GUIDE

repsat
stestat(‘wait;’, err, pos,RetValue[0]);
Write (’Time remaining = *);
if (err <> NO_ERROR)
then BrrHandler (err);
TimeRemaining := RetValuel0]:

case (RetValuel[l] and $c0) of
$20: TimeRemaining := 1000*TimeRemaining;
$80: TimeRemaining := 100*TimeRemaining;
$40: TimeRemaining := 10*TimeRemaining;
end;

if (TimeRemaining < 1000}
then Writeln(TimeRemaining, ‘ usecs’)
else
begin
TimeRemaining := TimeRemaining/1000.0;
if (TimeRemaining < 1000)
then Writeln(TimeRemaining,’ msecs’)
alse
begin
TimeRemaining := TimeRemaining/1000.0;
Writeln(TimeRemaining,’ secs’);
end;
end;

stestat (‘status;’, err, pos,RetRegl0]);
Writeln(‘'Checking status = ‘,RetReg(0],’ hex’);
if (err <> NO_ERROR)
then ErrHandler(err):
until (($01 and RetRegf[0])=0): (*wait while program is executing *)

stestat (‘wait;’, err, pos,RetValue([0]);:
Writelrn;
Writeln{‘Timed ocut. Wait raeturns *};
if (err <> NO_ERROR}
then ErrHandler{err);

PROGRAMMING EXAMPLES 4-19

TimeRemaining := RetValue[0];

case (RetValue[l] and $c00) of
$§c0: TimeRemaining := 1000*TimeRemaining;
$80: TimeRemaining := 100*TimeRemaining;
$40: TimeRemaining := 10*TimeRemaining;

end;

if (TimeRemaining < 1000)
) then Writeln(TimeRemaining, ’ usecs’)
else
bagin
rimeRemaining := TimeRamaining/1000.0;
if (TimeRemaining < 1000)
then Writeln(TimeRemaining, ' msecs’)
else
begin
TimeRemaining := TimeRemaining/1000.0;
Writeln{TimeRemaining, ' mecs’);
end;
and;

Writeln;
Writeln(‘NOTE: At completion WAIT; returns the orxriginal delay.’);
end.

4-20 Trigger Mastor INTERFACES USER GUIDE

Chapter 5
CREATING PROGRAMS FOR

Trigger Master MEMORY
|

5.1 INTRODUCTION

One Trigger Master feature is its ability to run programs from its own memory. If your
word processor can create an ASCH/DOS output, you can create programs and then
"compile" them using the STCCOM.EXE program. The section "The Command Set" in
Chapter 3 describes the available commands. All commands, except BEGIN, CONT, and
X, are supported in programs for Trigger Master memory (the END command is
optional). You may use tabs, spaces, and retums to make your file more readable and
enter comments with beginning and ending asterisks.

Note: You can also develop programs from PLAYWIN.EXE and PLAYDOS.EXE.
To use STCCOM enter the following command line at the DOS prompt.

stocom YourSourceFile

STCCOM generates a list file with the suffix .LST; this file lists each command on a
separate line.

« If there is no error in the command, the first column of the listing shows the location
in memory where the command starts and the command.

» 1f there is an error, the command is listed followed by the error message.

If your file contains no errors, STCCOM generates a load file with the suffix .LOD; this
file can be loaded into Trigger Master using STCLOAD.

This sample source file produces the listing which foliows:

Source File

* This is a file for use with STCCOM *

de 23; * parform loop 23 times *
Arm:repd0; * arm to detect 40 triggers on line 1 *
wait 200u; * wait 200 micro seconds *
trig2; * generate trigger on line 2

loop;

CREATING PROGRAMS FOR Trigger Master MEMORY 5- 1

List File

07714792
16:16:33

* This is a file for use with STCCOM *
4] do 23;
* perform loop 23 times *
Arm:repd0; ARM_NEEDS_LINE
* arm to detect 40 tyiggers on line 1 *

4 wait 200u;
* wait 200 micro seconds *

10 trig2;
* generate trigger on line 2
loop:

TERM_COMMENT_WITH_ASTERISK

Total BErrors Detected = 2

If you correct the source file errors and recompile the file, the following files are
produced:

Source File (corrected version)

* This is a file for use with STCCOM *

do 23; * perform loop 23 times *
Armlirvepdl; * arm to detect 40 triggers oo line 1 *
walit 200u; * wait 200 micro seconds *
trig2; * ganerate trigger on line 2 *

loop;

Listing File
This is a listing for try2.scr oreated

07/14/92
16:18:21

* This is a file for use with STCCOM *

0 do 23;
* perform loop 23 timas *

4 Arml:repd0;
* arm to detect 40 tyiggers on line 1 *

10 wait 200u;
* wait 200 micro seconds *

16 trigs;
* genarate trigger on line 2 *

25 loop;

Total Brrors Detected = 0
LOD file oresated with 26 entries

5-2 Trigger Master INTERFACES USER GUIDE

Chapter 6
CREATING A BACKGROUND DATA

ACQUISITION SYSTEM FOR DOS
-

6.1 INTRODUCTION

Trigger Master is capable of performing the control functions required by a small data
acquisition system. While ranning a program from its own memory, Trigger Master can
generate trigger outputs, wait for trigger inputs, and generate delays. By occasionally
calling on the PC o move data, make decisions, or bring other resources to bear, Trigger
Master can implement a data acquisition system that shares the PC with another DOS
function.

This chapter describes creating a Terminate-and-Stay-Resident (TSR) program for
Trigger Master. The TSR program operates in the background while you execute another
DOS program. You create the TSR by linking STRCRUNC.OB] to the program module
that you have written and compiled in C. Execute the resulting .EXE file by typing the
file name, For example, to execute the sample program TSRC, type the following at the
DOS prompt:

>TSRC
You can only install a Trigger Master TSR once. If you attempt to install a second TSR
while one Trigger Master TSR is currently installed, the system will return an error
message. You must de-install one TSR before installing another Trigger Master TSR or
running a TSR again. De-install a TSR by using the /d option in the command line, as
shown in the following example:

>TERC /4
When you de-install a TSR, you receive a message that the TSR is de-installed.

If you successfully de-install the TSR, you can then run your program again. TSRs
control certain computer interrupts; when you attempt to de-install the TSR, the TSR
tries to return interrupts to the state prior to the installation of the TSR. If this procedure
is successful, the TSR is de-installed.

Note: Occasionally, another program that controls interrupts will execute after
the TSR is installed. If this occurs, you may have to reboot the computer
in order to run the TSR again.

The TSR program executes as any other program. When the TSR terminates, it returns
the DOS prompt allowing you to run another program. Unlike other programs,
however, a portion of the TSR code remains resident in memory when the TSR
terminates.

CREATING A BACKGROUND DATA ACQUISITION SYSTEM FORDOS 6-1

6.2

While your computer is executing your current application, such as a word processor or
spread sheet application, the TSR code remains dormant. When certain events occur,
such as an interrupt from Trigger Master, the computer switches to the TSR resident
code. The TSR performs whatever task Trigger Master requires and then returns to the
previously executing application. Other events that can switch control to the TSR are
interrupts from a GPIB controller or another board in your computer. Generally, you
will be unaware that you are sharing the computer; you may notice an interruption if
the computer must move a lot of data between instruments or disks.

This chapter discusses the general structure of the TSR and the functions that are
available to log data and wait on interrupts. The chapter also presents an example of a
TSR, a portion of the log file generated by the example TSR, and the details involved in
constructing a TSR in the C programming language.

THE TSR STRUCTURE

Create your TSR by linking your C program to the object file STCRUNC.OB]. If you are
using a GPIB controller, you must include the appropriate IEEE library in your link
statement.

You must name the main module of your program STCTEST. The STCTEST module will
call procedures from STCRUNC.OB]J, IEEE.LIB, or custom functions and procedures.
Although, all your test programs must contain STCTEST, your source and .EXE files can
be given any name. The details of constructing the TSR are discussed later in this
chapter.

The intent of the sample TSR is to use one Trigger Master to control a measurement and
then log data to a disk. Therefore, this TSR makes use of specialized and restricted calls.
These calls, which are discussed in detail later in this section, are as follows:

NOKPC488 Produces an error exit if a KPC488.2TM controller is not
found.

MISSINGGPIBDEV Produces an error exit if a GPIB device is not found.

STCRUN Initializes Trigger Master and GPIB (if used), starts Trigger

Master program execution, and converts your program
into a dormant TSR that waits for a Trigger Master
interrupt.

Note: The STCRUN call must appear in your program following the
NOKPC488 and MISSINGGPIBDEV calls, but before any other calls.

WAITONSTC Restarts Trigger Master and waits for Trigger Master
interrupts.
JMPWAITSTC Starts Trigger Master at a new program location and waits

for Trigger Master interrupts.

WAITONGPIB Waits for an interrupt generated by a KPC488.2TM
controller.

WAITONAUX Waits for an arbitrary interrupt.

6 -2 Trigger Master INTERFACES USER GUIDE

STCFLAG Returns the value of the Trigger Master flag register toa
TSR.

STCLOGBIN Logs binary data to disk.

STCLOGDATE Logs the date to disk.

STCLOGFLAG Logs the Trigger Master flag register value to disk.
STCLOGPROGOCNT Logs the Trigger Master program location to disk.

STCLOGSTR Logs a string to disk.
STCLOGTIME Logs the time to disk.
STCEXIT Terminates the TSR.

Normally, your STCTEST program will perform certain initialization functions. If you
are using a KPC488xxx GPIB controller, you will generally initialize the controller and
certain other devices. If the controller or devices are not present, you should exit the
program using the NOKPC488 or MISSINGGPIBDEYV calls; this procedure displays an
€ITOr message.

At some point you will call STCRUN to start executing the Trigger Master onboard
program, convert the program into a TSR (with a return to DOS), and cause the TSR to
wait for an interrupt from Trigger Master. When Trigger Master generates an interrupt,
control is returned to the TSR. At that point, you can take one of the following actions:

= Log data to the disk using one of the STCLOGxxx functions.
. Read the Trigger Master flag register using STCFLAG.

+» Put the TSR back to sleep by resuming operation of Trigger Master and then
generate another interrupt using WAITONSTC or JMPWAITSTC.

» Put the TSR back to sleep to wait for another interrupt using WAITONGPIB or
WAITONAUX.

« Terminate the TSR using STCEXIT.
NOKPC488 and MISSINGGPIBDEV

You can use one KPC488xxx GPIB controller at the standard address in your TSR. At the
beginning of your program, you can use the IEEE library call gpib_board_present to
determine if a GPIB controller is present. If a controller is not present, you should call
NOKPC488 to exit your program. Since the TSR can only support a single GPIB
controller, the NOKPC488 call does not require an argument.

If you are using GPIB devices, you may find that a GPIB device times out. If this
happens, you should exit your program by calling MISSINGGPIBDEV with the GPIB
device address as the argument.

If you have not yet called STCRUN, the calls NOKPC488 or MISSINGGPIBDEV will
display an error message on your monitor. Otherwise, a tone is generated, an error
message is placed in your log file, and program execution stops.

CREATING A BACKGROUND DATA ACQUISITION SYSTEM FORDOS 6-3

STCRUN

STCRUN must be the first Trigger Master call (following the calls NOKPC488 and
MISSINGGPIBDEV) in your program. STCRUN initializes Trigger Master and software,
causes Trigger Master to start executing its program, and starts your program opetating
as a dormant TSR waiting to be awakened by an interrupt from Trigger Master.

STCRUN accepts seven arguments and incorporates the functions of the STCINIT and
STCLOAD calls. The first argument is your Trigger Master board address and the
second argument is the name of the file to be loaded into Trigger Master program
memory. The third argument is the name of the disk file to which the TSR is to log data.
The fourth argument is the intérrupt level specified for Trigger Master (the purpose of
this TSR is that it will remain dormant until awakened by an interrupt from Trigger
Master). STCRUN checks for a valid XT or AT level, but has no way of knowing if you
are using an AT board.

Every call which waits for an interrupt accepts a "ticks" argument. This argument allows
you to specify the length of time the TSR should wait for an interrupt to occur before
logging off with an error message.

« A'ticks" value of 0 disables time checking; the TSR will never log off, but will wait
forever for an interrupt.

« Nonzero "ticks" values specify the number of computer clock interrupts the TSR
should wait before logging off; the computer generates a clock interrupt about 18.2
times per second or about 1 clock interrupt every 55 msec. You should atlways
specify a minimum of 2 ticks since you may set your ticks just before a clock
interrupt.

STCRUN accepts two final arguments that are interrupt levels generated by either your
KPC488xxx GPIB controller or an auxiliary board. Choosing level 0 for these interrupts
disables the interrupts. If you choose a level for the GPIB controller, the KPC488xxx will
be initialized to generate an interrupt on the receipt of an SRQ (GPIB Service Request).
You must perform a serial poll of the GPIB device to clear the SRQ.

Setting up a nonzero auxiliary interrupt sets up an interrupt handler for the interrupt; it
is your responsibility to program the card to generate the desired interrupt and, if
necessary, to clear the board’s interrupt.

STCRUN checks for valid interrupt levels and verifies that different levels are used by
the different functions, however STCRUN does not know if you are duplicating a level
that is used by another board in your computer.

Note: If you use an AT level, ensure your board supports the AT levels. You
board jumpers must reflect the levels specified in STCRUN.

If STCRUN encounters a problem, such as a opening a file or a duplicate interrupt level,
it displays an error on the monitor and terminates program execution. If STCRUN does
not encounter any problems, it opens a log file, your program becomes a TSR, and the
computer displays a line indicating the TSR is installed. You are then returned to the
DOS prompt.

6-4 Trigger Master INTERFACES USER GUIDE

The opened log file contains a standard header similar to the following:

Frog Name: TSRC.EXE

Pate: NOV 02, 1952

Time: 14:27:53.76

Memcry paragraphs used {in hex): 0510

The first three lines contain the program name and date and time of creation. The fourth
line indicates the number of memory paragraphs (in hexadecimal notation) your TSR
occupies. To convert the memory paragraphs to bytes, add a 0 to the end of the number
and convert to decimal. In the example, the TSRC.EXE program uses about 21 Kbytes
(5100(hex)). The program contains the GPIB library.

WAITONSTC and JMPWAITSTC

Calling WAITONSTC or JMPWAITSTC executes Trigger Master again and puts the TSR
back to sleep (to wait for another Trigger Master interrupt). These calls contain the tick
parameter, described for STCRUN to avoid a hang condition if no interrupt is generated.
Without the tick parameter, the WAITONSTC command is basically a CONT:INT
command that causes the Trigger Master program to start executing at the next step.

The JIMPWAITSTC command accepts a second parameter which tells the program
where to start execution and to perform an X nn:INT command. This process allows you
to have multiple programs resident in Trigger Master program memory, jumping to
different code based on previous results or repeating a program any number of times. If
you create your Trigger Master program as an ASCII file and compile it using STCCOM,
you can determine your jump addresses from the list generated by STCCOM.

WAITONGPIB and WAITONAUX

Calling WAITONGPIB or WAITONAUX puts the TSR back to sleep to wait for an
interrupt from a KPC488xxx controller or other card. Both calls contain a tick parameter
(refer to the STCRUN description for further information).

STCFLAG

The STCFLAG call returns the value of the STCFLAG register, enabling a program to
make decisions based on the progression through the Trigger Master program.

CREATING A BACKGROUND DATA ACQUISITION SYSTEM FORDOS 6-5

STCLOG

Since the purpose of the TSR is to log data to a disk, there are a number of log calls to
facilitate the logging function. If a problem is encountered logging data (for example, a
diskette is absent), the TSR will create a tone and attempt to log the data again after
approximately 30 seconds. The TSR will make 10 attempts to log the data, and, if it is
still unsuccessful, will stop executing. The following list describes the log calls.

STCLOGBIN Logs a block of memory bytes. You must specify the beginning address
of the memory area and the number of bytes to be logged.

STCLOGDATE Acquires the current date from DOS and logs it to the disk as shown in
the following example:

NOov 02, 1592

STCLOGFLAG Acquires the current value of the Trigger Master flag register and logs
it to the disk,

STCLOGPROGCNT Acquires the current value of the Trigger Master program memory
location and logs it to the disk.

STCLOGSTR Allows you to annotate your log. For example, the C code:
stelogstr ("\r\nsStart of GPIB loop\r\n");
results in the entry:
Start of GPIB loop

STCLOGTIME Acquires the current time from DOS and logs it to the disk as shown in
the following example:

14:27:53.76

STCEXIT

The STCEXIT call shuts down the TSR when the TSR is done. STCEXIT disables any
board interrupts and attempts to replace any original intexrupt vectors intercepted by
the TSR. The TSR generates a log-off entry in the log file similar to the following
example:

Program Terminated Normally
Nov 02, 1982
14:28:18.25

Vector 08h returned
Vecotor 05h returned
Vector 10h returned
Vector 13h returned
Vector 1l6h raeturned
Vector 28h returned
Vector 0Dh returned
Vector 74h returned

The "Vector ... returned"” lines show the interrupts that the TSR intercepted. In this
example, STCEX]T was able to return all the vectors to the ones that were in place before
the program ran; it may now be possible to deinstall the TSR. The program code is also
still resident and monitoring the "multiplex" interrupt. To remove the code from
memory, deinstall the TSR by running it again using a"/d" option. In the example, the
TSR has the executable file TSRC.EXE. To deinstall the TSR, enter the following:

6-6 Trigger Master INTERFACES USER GUIDE

>TSRC /D

The monitor displays a message indicating the success or failure of deinstalling the TSR.
If the log indicates that one or more of the vectors could not be returned, do not deinstall
the TSR.

ATSRLOG

The following example illustrates a portion of the log generated by the program in the
section that follows. Data that has been deleted from the example is indicated using an
ellipsis (...).

Prog Name: TSRC.EXE

Date: NOV 02, 1992

Pime: 14:27:53.76

Memory paragraphs used (in hex): 0510

Start of GPIB loop
14:27:53.98
14:28:05.07

At end of GPIEB loop
NDCV+03 ,98368E+0,B001
NDCV+03 .98736E+0,B002
NDCV+04.31335B+0,B05S
NDCV+04.315871E8+0,B100

Start of Trigger Master loop
14:28:06.39

14:28:17.05

At end of Trigger Master locp
NDCV+04.31937E+0,B001

NDCV+04 .32178B+0.B002
NDCV+04.54026B+0,B099
NDCV+04.54151E+0,B100

Program Terninated Normally
Nov 02, 1892
14:28:18.25

Vector 08h returned
Vector 0Sh returned
Vector 10b returned
Vector 13h returned
Vecter 16h raturned
Vector 28h returned
Vector ODh returned
Vector 74h returuned

CREATING A BACKGROUND DATA ACQUISITION SYSTEM FOR DOS 6-7

64 A TSREXAMPLE
The following C program can run as a TSR.

/ /SH-I(-H-#H-ﬂ-*l-!(-ﬂ-l-m*ﬂ-ﬂ-ﬁﬂ*ﬂ-#*mﬂ-*ﬂ-ﬂ%&%ﬂ‘**#*“**********ﬂ-*##ﬂ-*ﬂ* / /

// TSRC.C is C source code for a program which illustrates the

//
//
//
//
//
//
/!
//
//
//
//
//
/!

use of stcrunc.obj and ieee-c.lib to create a TSR program
to run an Trigger Master.

This example uses a PCIP-AWFG as a source and a Keithley
196 as a measuring and data storage device. Alternatively, a
DAS-50 could be used to collect data.

The AWFG is loaded with a sequence of values which it will
step through as it receives external triggers from
Trigger Master.

After some initialization the 196 will be triggered to

measure the output from the AWFG and store the value in the
196’s internal memory. Next Trigger Master will trigger the
AWFG causing the AWFG to step to its next output value. The
Trigger Master will generate a delay to allow the AWFG output to
stabilize (as well as any device or circuitry between the AWFG and
the meter).

The meter will be comunanded to make the next measurement
and the process will repeat the required number of times.

Finally the stored values will be retrieved and stored to

disk.

To illustrate the features of the trigger link the test
will be repeated twice: first using the GPIB to control the
196 measurement, and then using the trigger link.

The first time through, GPIB GETs (group execute triggers)

will be used to initiate the reading and the 196 will

respond with an SRQ (service request). During the second

run, Trigger Master will trigger the 196 External Trigger input and
monitor the 196 Voltmeter Complete output.

/ /#W*ﬂ'*BHHHC'**#H%*#mﬁﬁmw**W*i‘m*“ﬁmﬁ*m##*ﬂ*ﬁﬂﬂ*

#include "stcrun.h” / / function prototypes from stcrunc.obj.
#include "ieee-c.h" / / function prototypes from ieee-c.lib.
#define K196 12 / / GPIB address of Keithley 196.
#define DATA_PTS 100 / / Number of points to acquire - must

// agree with Trigger Master program.

#define DATA_LEN 23 / / Length of data string returned by

// Trigger Master.

6-8 Trigger Master INTERFACES USER GUIDE

void far pascal stctest()

int BrdType; / / variable for gpib driver board - 0
// if no board present.
int status; // status returned by gpib calls - 0 if
// time out.
intl; / / number of bytes transferred by GPIB.
int poll; / / result of a serial poll.
int index; // index for repeats.

static char r[DATA_PTS*DATA_LEN];

/ / array for data returned by K196.
BrdType = gpib_board_present();

/ / check for presence of KPC488.
if (BrdType == 0) NoKPC488();

initialize (21,0%; / / make KPC488 a controller
// at address 21.

/ / k2 2 9 A o S A A R S A N N NOTE 32 I S NN O 2 6 o 0 2 S 2

// Comment out the following line if you are using the
// KPC488.2 controller. The KPC488.2 does not support
// listener_present.

if(flistener_present(K196)) MissingGpibDev(K196); / / check for K196

/ / Set up to measure using GPIB control

stcrun(0x310, / / Load Trigger Master at address 310 hex
“tsr.lod", / / with program TSR.LOD,
"tsr.log”, / / log data to TSR.LOG,
5, / / use interrupt level 5 for Trigger Master,
22, / / allow 19 ticks(1+ sec) for Trigger Master to return
12, // use interrupt level 12 on GPIB
0); // don't use AUX interrupt

spoll(K196,&poll &status); // clear srq

send (K196,"FOROT3Q0I0M8Y0K3X" &status);
/ { device command to set 196 to:
// dc volts, autorange, 1 measurement on
// GET, store each acquisition in 196
// memory. store continuously,
// generate SRQ when reading is done,
// terminate strings with <CR><LF>

// and do not send EOL
poll=0;
while (poll&16 = 16) spoll(K196,&poll,&status);
// wait for ready

stclogstr("\r\nStart of GPIB loop\r\n");
stclogtime(); // log the time at the start of the loop
stclogstr("\r\n");

/ / place carriage return and line feed in log

CREATING A BACKGROUND DATA ACQUISITION SYSTEMFORDOS 6-9

for (index = 0;index < DATA_PTS; index-++){
transmit("UNT UNL MTA LISTEN 12 GET", &status);
/ / trigger 196 via GPIB
waitongpib(95);, // wait for SRQ from 196 with 5-second time out

spoll(K196,&poll &status); // clear srq
waitonstc(19); / / wait while Trigger Master triggers AWFG
}

stclogtime(); / / log the time at the end of the loop

stclogstr("\r\nAt end of GPIB loop\r\n"),

// The above C language FOR LOOP synchronizes with the following
// Trigger Master program loop.

//WAIT 10U; * DUMMY WAIT *

/ /FLAGOQ:INT; * RETURN TO PROGRAM *

!/ * AS REQUIRED FOR DEVICES BETWEEN AWFG AND METER) *
/ /DO 99; *99 = DATA_PTS-1 (NEED TO MAKE DATA_PTS-1 CHANGES *
// TRIG1; *ISSUE TRIGGER TO STEP Trigger Master *

// WAIT1U; * WAIT FOR Trigger Master TO SETTLE

/7 (LEAVE ADDITIONAL TIME *

/7 * AS REQUIRED FOR DEVICES BETWEEN

// AWEFG AND METER) *

// FLAGLINT; * INTERRUPT PROG *

/ /LOOP;

/ /FLAGZINT; * RETURN TO PROGRAM TO FINISH OUT LOOP *
//

//HALT; * NOT REALLY REQUIRED BUT ILLUSTRATES
// THE USE OF *

//HALT; * IMPWAIT Trigger Master *

// Set up to retrieve stored values

send (K196,"BIMOX" &status); // device command to set 196 to:"

| / / read back memory and not generate SRQs
transmit("UNT UNL MLA TALK 12",&status); // set 196 to talk
rarray(r, DATA_PTS*DATA_LEN, &I &status); // enter data from 196
transmit("UNT UNL" &status); // shut down GPIB bus

stclogstr(r); / / log receive array to disk
stclogstr("\r\n"); / / place carriage return and line feed in log
// Set up to measure using Trigger Master control

send (K196, "T7M16Q0I0X" &status); / / device command to set 196

/ / to: make one reading on an external trigger
waitongpib(95); / / wait for SRQ from 196

// with 5 second time out
spoll(K196,&poll,&status); / / clear srq

stclogstr("Start of Trigger Master loop\r\n");
stclogtime(); // log the time at the start of the loop
stclogstr("\r\n"); // place carriage return and line feed in log
jmpwaitstc(34,0); // execute next portion of Trigger Master program
// program is separated needlessly just to
/ / illustrate the use of jmpwaitstc
// get jump address from tsr.lst

6-10 Trigger Master INTERFACES USER GUIDE

6.5

// * THIS PORTION OF PROGRAM PERFORMS Trigger Master
// CONTROLLED ACQUISITION *

//

/ /FLAGS3;

//DO100; *100=DATA_PTS*

// TRIG1; *ISSUE TRIGGER TO STEP Trigger Master *

// WAIT 1U; * WAIT FOR Trigger Master TO SETTLE
/7 (LEAVE ADDITIONAL TIME *
// * AS REQUIRED FOR DEVICES BETWEEN AWFG AND METER) *

// TRIG2; *ISSUE TRIGGER TO 196 EXTERNAL TRIGGER INPUT *
// ARM3; *WAIT FOR RESPONSE FROM 196 VOLTMETER

// COMPLETE OUTPUT *
/ /LOOP;
/ /FLAG4INT; * INTERRUPT PROG *

stclogtime(); // log the time at the end of the loop
stclogstr("\r\nAt end of Trigger Master loop\r\n"};

// Set up to retrieve stored values
send (K196,"B1MOX" &status); / / device command to set 196 to:
/ / read back memory and not generate SRQs
transmit("UNT UNL MLA TALK 12"&status); // set 196 to talk
rarray(r, DATA_PTS*DATA_LEN, &1 &status); / / enter data from 196
transmit("UNT UNL" &status); // shut down GPIB bus

stclogstr(r); / / log receive array to disk
stclogstr("\r\n"); // place carriage return and line feed in log
steexit(); // measurement done, shut down TSR

}

CREATINGATSRFORC

The intent of this TSR is to service Trigger Master and log data in the background.
Therefore, your program should not perform 1/0 other than the special log functions
provided. Your program should not use any of the standard C include files; use
STCRUN instead of having a function called main your program. You can call other
functions or procedures from STCTEST.

You should compile your program without stack checking and the normal C libraries.
For Microsoft C, compile your program with the foliowing command line:

¢l /As /Z1l /Gs3 /¢ yourprog.c

Then, link the result to stcrunc.obj and the IEEE library (if required) as follows:

link sterun.chj yourprog.obi,yourprog.exe,,ieeedds

CREATING A BACKGROUND DATA ACQUISITION SYSTEM FOR DOS 6 - 11

Appendix A

Trigger Master ERROR MESSAGES

This appendix contains an alphabetical list of Trigger Master error messages and their

definitions.

Errnr Maccann
mF U Wi Illkuuv

ADD OVER RNG
ADDRESS EXCEEDS 3FC
ARM NEEDS LINE

DO NEEDS VALUE

DO OVER RANGE
DRIVE NOT READY
DUPLICATE STC ADDR
EXCEEDS DO LEVEL
FILE NAME TOO LONG
FLAG OVER RANGE
ILLEGAL EXTEN

INCOMPLETE COMMAND
IN RUN MODE
INSUFFICIENT PROG MEM

MSECS OVER RNG

MSECS UNDER RNG

NEED ANOTHER LINE

NEED EXTENSION

Definition
Address in a BEGIN command exceeds 1023.
The maximum Trigger Master address is 3FC.
ARM command requires line number(s).

The DO command requires a loop count (1 -
4096).

Number of loops specified with the DO command
exceeds 4096.

A disk drive was not ready.

You tried to initialize a Trigger Master board with
Lhe same address as a previously initialized
oard.

Only 1 nested DO loop is allowed (you have
issued 3 DO commands without a LOOP).

Strings specifying files to read or write cannot
exceed 80 characters.

The FLAG command contained a value greater
than 255.

lllegal extension following a : (colon) in a
command or request.

Command or request may be missing characters.
HALT is the only valid command in run mode.

There is not enough room in Trigger Master
memory for the command.

Time specified in the TRIG or WAIT command
exceeded 65635 milliseconds.

Time specified in the TRIG or WAIT command
was less than .01 (TRIG) or .001 (WAIT)
milliseconds.

A line number followed by & comma in the ARM
or TRIG command requires another line number,

Colon (:) must be followed by an extension.

Trigger Master ERROR MESSAGES A-1

Error Message

NEED SEMICOLON

NEED TIME SCALE

NEED TIME VALUE

NOC COMMAND

NO ERROR
NO REP WITH SEMI

NOT IN IMMED MODE
NOT IN LOOP

NOT IN PROG MODE

OUT OF CHARS

PER REQUIRES REP

PROB CREATING WRT FILE
PROB OPENING READ FILE
PROB OPENING WRT FILE
PROB READING FILE

PROB WRITING FILE

REP NEEDS PER OR SEMI

REP OVER RNG
SECS OVER RNG

SECS UNDER RNG

Definition

All commands and requests must end with a ;
{semicolon).

Times for the TRIG or WAIT command must be
specified using one of the following letters:
s(seconds), m{milliseconds), or u{microseconds).

The TRIG and WAIT commands require a time

between 10 microseconds and 65.535 seconds
(TRIG) and between 1 microsecond and 65.535
seconds (WAIT).

Command or request contained no printable
characters.

No error detected.

A TRIG command with the SEMI option cannot
also have the REP option.

The commands BEGIN and CONT can only be
used in immediate mode.

A DO command must be issued before a LOOP.

The commands DO, END, LOOP, and WAIT and
thedextension SEMI can only be used in program
mode.

Commands, requests, and extensions must be
complete.

The TRIG command with a REP extension in
immediate mode requires a PER extension.

File could not be created by STCDUMP.
File could not be opened for reading.
File could not be opened for writing.

File was opened for reading but a problem was
encountered while reading.

File was opened for writing but a problem was
encountered while writing.

The TRIG command with a REP extension in
pro%ram mode requires a PER extension and/or
a SEMI extension.

Number of repetitions specified in an ARM or
TRIG command exceeds 4096.

Time specified in the TRIG or WAIT command
exceeded 65.635 seconds.

Time specified in the TRIG or WAIT command
was Iedss than .00001 (TRIG) or .000001 (WAIT)
seconds.

A -2 Trigger Master INTERFACES USER GUIDE

Error Message

Definition

START COMMENT WITH ASTERISK Comments used with sources for STCCOM must

STC ALREADY ACTIVE
STC NOT INITIALIZED
STC NOT PRESENT

STC NUM OUT OF RNG
STC PREVIOUSLY INITIALIZED

TERM COMMENT WITH ASTERISK
TIME OVER RANGE

TIME OVER RESOLUTION

TRIG NEEDS LINE
UNRECOGNIZED COMMAND
UNRECOGNIZED REQUEST
UNRESOLVED LOOP

USECS OVER RNG

USECS UNDER RNG

WAIT NEEDS VALUE
X OVER RANGE

start with an asterisk.

You tried to activate an already active Trigger
Master board.

You tried to activate a Trigger Master board
which has not been initialized.

The driver can not find a Trigger Master board at
the address specified.

Use 0-3 to specify a Trigger Master board.

You tried to initialize a previously initialized
Trigger Master board.

Comments used with sources for STCCOM must
end with an asterisk.

Times for the TRIG or WAIT command exceeds
65.535 seconds.

Times for the TRIG and WAIT commands in the
range of 65536 through 99999 can only be
specified to four digits (65540-93990).

Note: When this error occurs, the time will
frequently also be over range unless you
are in the microsecond range.

TRIG command requires line number{s).
Command may be misspelled.
Requests must be spelled exactly.

You tried to exit program mode with an END or X
command and there are more DO commands in your
program than LOOP commands.

Time specified in the TRIG or WAIT command
exceeded 65636000 microseconds.

Time specified in the TRIG or WAIT command was
less than 10 (TRIG) or 1 (WAIT) microsecond.

The WAIT command requires a time with a scale.
The address with the X command exceeds 1023.

Trigger Master ERROR MESSAGES A-3

Appendix B

COMMAND QUICK START
I

This appendix contains examples for the structure of the strings required by STCCMD to
accomplish various tasks. Refer to Chapter 3 for a complete discussion of the strings; see
Appendix A for a list of error messages returned by the calls.

B.1 GENERATE TRIGGER OUTPUTS
The following examples generate trigger outputs (Active low pulse, 5us long).

» Generate a trigger on lines 1, 2and 5:
trig 1.2,5;
Note: Separate multiple line numbers with commas.

= Generate five triggers, 15 milliseconds apart on line 2:
trig 2:rep 5:per 15m;
Note: Use s{seconds), m(milliseconds) or u(microseconds) to designate time
scales.
» Generate two triggers on line 6 in the semi-sync mode:

trig 6:rep 2:semi;
Note: Use semi-sync in program mode only.

B.2 WAIT FOR TRIGGER INPUTS

The following examples generate a wait for trigger inputs condition.

» Wait for high-to-low triggers on lines 1,4 and 5:
arm 1,4,5;
Note: Separate muitiple line numbers with commas.
« Wait for low-to-high trigger on line 6.
arm 6+;
= Wait for seven repetitions of high-to-low triggers on line 2:

arm 2:rep7;

Note: Use in program mode only.

COMMAND QUICK START B-1

B3

B.4

B.5

ENTER PROGRAM MODE

The following examples enter program mode.

» Put Trigger Master in program mode and start program execution at location 0:
begin;
« Put Trigger Master in program mode and start program execution at location 24:

begin 24;

SET UP and TERMINATE PROGRAM LOOP (Program Mode Only)
The following examples set up and terminate a program loop:

« Start loop of 45 repetitions:
do 45;
« Terminate loop:

loop;:

GENERATE A WAIT (Pragram Mode Only)
The following example generates a wait condition.

« Generate a wait of 3.22 seconds:

walt 3.22a;
Note: Use s(seconds), m(milliseconds) or u{microseconds) to designate time
scales.

TRACK PROGRAM EXECUTION and GENERATE INTERRUPTS

The following examples track program execution and generate an interrupt.

« Write 76 into the flag register:
flag 76;
Note: Use the flag request to read the flag register.
« Write 36 to the flag register, generate an interrupt, and halt the program:

flag 36:int;
Note: Programs using .xwr should be started with x:zvr and continued with cowr.: mnr.

B-2 Trigger Master INTERFACES USER GUIDE

B.7 EXIT PROGRAM MODE

The following example exits program mode.

» Exit program mode:

end;

B.8 INITIATE PROGRAM EXECUTION
The following examples start program execution.

« Start program execution at location 0:
x5

Note: If the program contains the command practnx] s INT, USE X: XNT.

« Start program execution at location 300;

x 300;
Note: If the program contains the command prac fan] : IvT, USe x 300: Inr.

B.9 HALT Trigger Master EXECUTION
The following example halts program execution on Trigger Master.

. Halt Trigger Master program execution:

balt;

Note: You can use this command in immediate mode or insert it within a
program. When you insert the command in a program, restart the
program with the command conr from immediate mode.

B.10 CONTINUE EXECUTION of HALTED PROGRAM
The following example continues execution of a halted program.

« Continue execution of halted program:

cont;
Note: If the program contains the command rrac [na] : IN?, USE CONT: INT.

COMMAND QUICK START B-3

Appendix C
REQUEST QUICK START

C.1

C2

C3

CAa

This appendix presents examples for the content of strings required by STCSTAT to
make various requests. Refer to Chapter 3 for a complete discussion of the strings; see
Appendix A for a list of error messages returned by the calls.

Check Remaining Trigger Inputs Established by ARM Command

The following example checks any remaining trigger inputs established by the ARM
command.

» Determine if Trigger Master is waiting for trigger inputs:

arm:rep;

Check Remaining Trigger Outputs Established by TRIG Command
The following example checks for remaining trigger outputs established by the TRIG

command.
» Determine if Trigger Master is outputting triggers:

trig:rep:

Check the Actual State of the Trigger Lines

The following example checks the actual state of the trigger lines. This command is
useful for hardware debugging purposes if the trigger detect circuitry uses latched
edges.

« Check the state of the trigger lines:

trig:in;

Check Time Remaining Before Next Trigger
The following example checks the time remaining before the next trigger.

» Check the remaining time:
trig:per;

Note: After executing the trigger, the time is reset to the initial period. Use one of the
following commands to determine what is happening: ruas, Taze:ses, starus, or
CONT.

REQUEST QUICK START C-1

CS5

o

Check Program Progress
The following examples check the progress of the program.

« Check for program still running:
status;

Note: Bit 0 (the lowest bif) is set during program execution.

» Check memory location of next instruction to execute:
cont;

» Check value of flag register that can be updated during program execution to
determine location in program:

£lag:
. Check if program has generated interrupt:

atatus;

Note: Bit 3 is set during interrupt request.

Check Remaining Loop Count
The following example checks the remaining loop count.

» Check progress through current loop:
loop;
« If program is in nested loop, check count remaining in cuter loop:

loop:out;
Note: This command is meaningful only within an executing nested loop.

Check Remaining Delay Time
The following example checks the remaining delay time.

« Check remaining delay time:

wait;
Note: After a delay, the time is reset to the initial delay time. Use a conr or ruac
request 10 determine if you are beyond a wait instruction.

C-2 Trigger Master INTERFACES USER GUIDE

	TOC:

